
The approach taken in any scientific computing endeavor 










At the beginning is a problem that we wish to solve. In most cases problem depends on many parameters and factors and we will not be able to solve it in all generality. Instead we make reasonable assumptions about the most relevant effects and parameters and we will approximate certain aspects of the problem.
What results is a model of the original problem that will capture the most important features. After these simplifications we will attempt to solve the model problem with the help of computers. Many tools will be available for particular problem and in the course of this work we will learn about them. In general two techniques are available.
· symbolic computations   :- we preserve he continuous character of the ------------ 
· numerical computations :- we represent continuous functions by a set of ------------- rounds in the --------------
NUMERICAL AND SCIENTIFIC COMPUTING : 
         
Numerical analysis is concerned with the design and analysis of algorithms for solving mathematical problems that arise in many fields, especially science & engineering.
Scientific computing is concerned with functions, equations whose underlying variables- time, distance, velocity, temperature, density, pressure, stress, and the like-are continuous in nature.

Scientific computing has to deal with these continuous quantities in discrete form.
Most of the problems of continuous mathematics (for example, almost any problem involving derivatives, integrals, or nonlinearities) can not be solved exactly, even in principle, in a finite number of steps and thus must be solved, by an (theoretically infinite) iterative process that ultimately converges to a solution.
We always look for "close enough" to the desire result for practical purpose.
One of the most important aspects of scientific computing is finding Rapidly convergent iterative algorithms and assessing the accuracy of the resulting approximation. 
COMPUTATIONAL PROBLEMS : 
Scientific computing -Ultimate aim 
            


Understand some natural phenomenon or to design some device.
· Observation
· Theory
· Computer simulation - >  representation and emulation of a physical system or 
process using a computer.
· Computer simulation can greatly enhance scientific understanding by allowing the investigation of situation that may be difficult or impossible to investigate by theoretical, observational, or experimental means alone.
Example - Astrophysics - The detailed behavior of two colliding black holes
· Too complicated to determine theoretically
· Impossible to observe directly or
· Duplicate in the laboratory
MATHEMATICAL MODEL :

To simulate it computationally, how ever requires only an appropriate mathematical model. (In this case Einstein's equations of general relativity).
Algorithm for solving equations numerically.
Sufficiently large computer to implement the algorithm.
A mathematical problem is well posed if
· a solution exists
· is unique
· depends continuously on problem data.


This condition means that a small change in the problem data does not cause an abrupt, disproportionate change in the solution.



This property is especially important for numerical computations as perturbations are usually inevitable.
Example : 
Inferring the internal structure of a physical system solely from external observations, as in tomography of seismology, often leads to mathematical problems that are inherently ill-posed in that distinctly different internal configurations may have in distinguishable external appearances.
Even when a problem is well posed, however, the solution may still respond in a highly sensitive manner to perturbation in the problem data.



In order to assess the effects of such perturbations we must go beyond the qualitative concept continuity to define a qualitative measure of the sensitivity of a problem.


When designing algorithm we must ensure that the numerical algorithm does not make the results move sensitive than to already inherent in underlying problem.


This requirement leads to "Stable algorithm".

General Strategy :   

Replace a difficult problem with an easier problem that has the same or at least a closely related solution.
· Infinite-dimensional space                 (        Finite -dimensional space
· Infinite process


(
Finite process
(integrals or infinite series) 
( 
Finite sum or derivatives with finite           

deference
· Differential equations


(
Algebraic equations
· Nonlinear problems


(
Linear problems
· High-order system


(
Low-order system.
· Complicated functions 

(
Simple functions.
(such as polynomials)
· General matrices


(
Matrices having a simpler form
To make this strategy work for solving a given problem, we must have
· An alternative problem, or class of problems, that is easier to solve.
· A transformation of the given problem into a problem of this alternative type that preserves the solution in some sense.

Transformed problem solution may only approximate that of the original problem, but the accuracy can be usually be made arbitrarily good at the expense of additional work and storage.


Thus primary concerns are estimating the accuracy of such an approximate solution and establishing convergence to the true solution in the limit.
APPROXIMATIONS in SCIENTIFIC COMPUTATIONS :
Source of Approximation :
Approximations before a computation begins -

· Modeling
· Empirical measurements           
· Previous computations
Systematic approximates is that occur during computation
· Truncation or discretization
· Rounding
The accuracy of the final results of a computations may reflect a combination of any or all of these approximations, and the resulting perturbation may be amplified by the native of the problem being solved or the algorithm being used or both.
Error Analysis - the study of the effects of such approximations on the accuracy and stability of numerical algorithms.
Example : (Approximation)

Surface area of the earth A =  4П r2

r = Radius of sphere.
The use of this formula for the computation involves a # of approximations : 
· The earth is modeled as a sphere, which is an idealization of its true shape.
· The value for the radius r ≈ 6370 Km. is based on a combination of empirical measurements and previous computations.
· The value of П  ( given by infinite limiting process. Truncation 
· The numerical values of input data and answer ( Rounded in a computer or calculator.

Absolute Error and Relative Error :


· The significance of an error is obviously related to the magnitude of the quantity being measured or computed.

· Example : an error of 1 is much less significant in counting the population of the earth, than in counting # of students in this class.

· This motivates the concept of absolute error and relative error

Absolute error = approximate value – true value

Relative error  = Absolute error   / true value

Another representation of relative error is that if an approximate value has a relative error of about 10-p, then its decimal representation has about ‘p’ correct significant digits ( significant digits are the leading non zero digits and all following digits).

Distinction between precision and accuracy : 

Precision - # of digits with which a number is expressed.

Accuracy - # of correct significant digits.

Ex : 3.252603764690804 is very precise number, but it is not very accurate as an approximation to.

Conclusion :- computing a quantity using a given precision does not necessarily mean that the 

                        result will be accurate to the precision.

A relationship between absolute and relative error :


Approximate value = (true value) x ( 1 + relative error).


Of course, we do not usually know the true value; if we dial, we would not need to bother with approximating it.

Thus, we will estimate or bound the error rather than compute it exactly, because the true value is unknown.

For this reason relative error is often taken to be relative to the approximate value rather than to the true value.

Date error and computational error : 





Error    

This distinction is not very clear-cut   (e.g.:- rounding may affect both input data and 

  subsequent computational result).

This distinction is helpful in understanding the overall effects of approximations in numerical computations.

A typical problem in one dimension can viewed as the computation of the value of a function,  f: R ( R, that maps a given input value to an output result.


x   
:  true value of the input.


f(x)
: desired true result.



            :  inexact input.




 :   approximation to the function.



Total Error 
=                         - f (x)     



 
     

                                    =       (               - f (
) )    + ( f(    )  - f (x) )




=
Computational Error                       +       Propagated data error.





Difference between the exact &              difference between exact  





approximate functions for the 
     function values due 





same inputs.



     to error in the input.

Note : - choice of algorithm has no effect on the propagated data error.

Truncation and Rounding Errors: 


Computation Error (error made during a computation).





 Truncation Error






Rounding Error


By definition computational error =  Truncation error + rounding error.

Example : For a differentiable function f : R( R.


By taylor’s theorem,

f (x+h) = f(x) + f ’(x) h + f “(θ) h2 / 2

For some  θ є [x , x+h ], so the truncation error of the finite difference approximation is given by MG/2, when M is a bound on | f “(t) | for t near x.

1


Assuming the error in function value is bounded by є , the rounding  error in evaluating the finite difference formula is bounded by 2 є / h.

Total computational Error bounded by 





With the first decreasing and the second increasing as h decreases. Thus, there is a  trade off between T.E and R.E. in choosing the step size ‘h’.

Distinguishing this function with respect to ‘h’ and setting its derivative equal to zero, we see that the bound on the total computational error is minimized when 

Note : -  
1.  The T.E. could be reduced by using a more accurate finite difference formula, such as central difference approximation,




2. The R.E.  could be reduced by working with higher precision arithmetic, if available.

Although T.E.  and R.E. can both play important role in a given computation, one or the other is usually the dominant factor in the overall computational error.

1. Roughly speaking, rounding error tends to dominate in purely algebraic problems with finite solution algorithms.

2. T.E. tends to dominate in problems, which integrals, derivatives, or nonlinearities, which after require a theoretically infinite solution process.

Forward and Backward Error :

Great Fact : 
The quality of a computed result depends on the quality of the input data, among 

other factors.
Examples : 
If input data are accurate to only four significant digits, say, then we can expect no more than four significant digits in the computed result. regardless of how well 

we do the computation.
The famous computer maxim "garbage in garbage out" carries this observation to its logical extreme.
This, in assessing the quality of computed results, we must not over look the possible effects of perturbations in the input data with in their level of uncertainty.
Suppose we want to compute the value of a function. y = f(x).
f : R ( R.










         :  an approximated value






Δy =            -  y       :  Forward Error. Discrepancy in computed 

value





Δx =            -  x         where  f (     )  =            : Backward Error.

How much data error in the initial input would be required to explain all the error in the final computed result ?


Example :  An approximation to    y =  






                   =  1.4



Absolute Forward Error = | Δ y | =  |       - y |  =  | 1.4 – 1.41421 |  ≈ 0.0142.


 or a relative forward error is about 1%.


To determine backward error we observe that                 = 1.4.


So absolute backward error 




         | Δx | = |         -  x |  =  | 1.96  -  2|  =  0.04.



or a relative backward error of  2%.
Q. How Forward and Backward error are related to each other quantitatively ?

Sensitivity and conditioning : 

Fact : 

An inaccurate solution is not necessarily due to an ill-conceived algorithm, but may be inherent in the problem being solved.
Even with the exact computation, the solution to the problem may be highly sensitive to perturbations in the input data.
The qualitative notion of "Sensitivity" and its quantitative measure, called "Conditioning" are concerned with propagated data error, i.e., the effects on the solution of perturbation in the input data.
A problem is said to be insensitive, or well conditioned, if a given relative change in the input data causes a reasonably commensurate relative change in the solution.
A problem is said to be sensitive, or ill-conditioned, if the relative change in the solution, can be much larger than that in the input data.


Condition number   .
or   | Relative forward error | = condition number  x  |Relative backward error|.

A problem is ill-conditioned, or sensitive, if its condition number is much larger than 1.
If a problem is ill-conditioned, then the relative forward error (relative perturbation in the solution) can be large even if the relative backward error (relative perturbation in the input) is small.
In general, the condition number varies with the input, and in practice we usually do not know the condition number exactly any way. thus

   | Relative forward error |         Condition number  x   | Relative backward error |.

Using calculus, we can approximate the condition number for the problem of evaluating a differentiable function f : R ( R.




   and hence 





Thus, the relative error in the output function value can be much larger or smaller than that in the input, depending on the properties of the function involved and the particular value of the input.
Inverse Problem:   
For a given problem, the inverse problem is to determine what input would yield a given output.
For the problem of evaluating a function, y = f(x), the inverse problem, denoted by           x = f --1(y)  is to determine, for a given value y, a value x such that f(x) = y.

From the definition we see that the condition number of the inverse problem is the reciprocal of that of the original problem.

If g is the inverse function g (y ) = f --1(y), and x and y are values such that        y = f(x), then g1(y) = 1/ f 1(x) provided f 1(x) ≠ 0.
Thus, the condition number of the inverse function g is 


Stability and Accuracy :

The concept of "stability" of a computational algorithm is analogous to conditioning of a mathematical problem in that both have to do with the effects of perturbations.
Stability refers to the effects of computational error on the result computed by an algorithm.
Conditioning refers to the effect of data error on the solution to a problem.
An algorithm is "Stable" if the result it produces is relatively insensitive to perturbations due to approximations made during the computation.
Accuracy refers to the closeness of a computed solution is the true solution of the problem under consideration.

Stability of an algorithm does not by itself guarantee that the computed result is accurate.
Accuracy depends on the conditioning of the problem as well as the stability of the algorithm.

For Accurate solution 

–        Stable algorithm is required to a well conditioned problem.
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The difference between the true result (for the actual input) and the result that would be produced by a given algorithm being exact arithmetic.





The difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite- precision rounding arithmetic. 





f ’(x) (





h





f(x+h) – f(x)





2               h





+





MG           2є 





f ’(x) (





2h





f(x+h) – f(x -h)





M





є 





 h   =  2





y





^





y





^





y





^





x





^





x





^





f





f





Backward Error





Forward Error





x





x





^





y





^





= f ( x ) = f( x )





^





^





y = f ( x)





2





y





^





y





^





1.96





x





^





| ( f ( x )  -  f( x ) ) / f( x ) |





| (  x  -  x ) / x | 





^





^





=





| ( y – y ) / y |





 





| (  x  -  x ) / x | 





^





Δ 





y





y





Δ 





x





x





=





=





=





Relative change in solution 





Relative change in input data





=





Relative Forward Error





Relative Backward Error





^





(





<





Absolute forward error  =   f ( x + Δx ) – f( x )     (      f ’(x) Δx 





Relative Forward error  =  f( x + Δx ) – f(x)
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Disclaimer – This version of lecture notes is not error free. Author is not responsible for any damage as out come of usage of this document. 
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