
Noname manuscript No.
(will be inserted by the editor)

Evaluation of CPU Frequency Transition Latency

Abdelhafid Mazouz · Alexandre Laurent · Benoı̂t Pradelle · William Jalby

Abstract Dynamic Voltage and Frequency Scaling (DVFS)
is one of the most employed techniques to reduce energy
consumption in computers. The main idea exploited by DVFS
controllers is to reduce the CPU’s frequency whenever it is
less intensively used to save energy. For example, memory
intense program phases are good targets for frequency re-
duction. However, depending on the CPU model, switching
the frequency can be performed in varying delays. Such de-
lays are often optimistically ignored in DVFS controllers,
whereas their knowledge could enhance the quality of fre-
quency setting decisions.

The following document presents FTaLaT (Frequency
Transition Latency measurement Tool), a tool able to mea-
sure the frequency transition latency directly on the com-
puter. The measurement methodology is also presented, ac-
companied by evaluations on three recent Intel processors.

Keywords DVFS · Statistical performance evaluation ·
Frequency transition latency

1 Introduction

Energy is now considered as a determinant topic for com-
puter science. Driven by autonomy constraints, embedded
platforms pioneered, but more recently, major concerns have
been raised in unexpected domains. It is the case for instance
in high-performance computing where the supercomputers
power consumption has reached levels preventing the cur-
rent technologies to be used in the next generation of super-
computers.

Among the different optimizations applied to reduce en-
ergy consumption, Dynamic Voltage and Frequency Scaling

Abdelhafid Mazouz · Alexandre Laurent · Benoı̂t Pradelle · William
Jalby
Univ. Versailles St-Quentin en Yvelines E-mail: first.last@uvsq.fr

(DVFS) has proven to be one of the most successful tech-
niques [Ge et al, 2007; Hsu and Feng, 2005; Wu et al, 2005].
The core idea of DVFS is to dynamically adapt processors
frequency and input voltage in order to reduce power con-
sumption. Common DVFS controllers exploit the slack time
of programs provoked by memory accesses or I/O and de-
crease the processor speed during such phases, effectively
reducing the total energy consumption without harming the
program execution time.

In most of the existing DVFS controllers, the latency re-
quired to transition the frequency is considered as a negligi-
ble quantity. However, several DVFS controllers are based
on frequent periodic polling of resource usage. They must
correctly estimate the CPU frequency transition latency in
order to determine an efficient polling period. Additionally,
some other approaches consider theoretical modeling of hard-
ware and can benefit from a precise estimation of the transi-
tion latency [Snowdon, 2010]. The frequency transition la-
tency is then an important information for many DVFS con-
trollers, among other potential usages.

We propose FTaLaT, a new frequency transition latency
estimator. Using precise measurements under different fre-
quency settings, FTaLaT can quickly provide a precise es-
timation of all the possible frequency transition latencies.
FTaLaT is freely distributed as open source software at:
http://code.google.com/p/ftalat.

2 How does it works?

The goal of FTaLaT is to measure the delay between the
request for a new frequency and the actual frequency transi-
tion. To do so, it executes a specifically designed short pro-
gram, called micro benchmark, or kernel. The benchmark is
run several times to determine its execution time with the
initial and target frequencies. Then, starting from the initial
frequency, the transition towards the target frequency is trig-

http://code.google.com/p/ftalat

2 Abdelhafid Mazouz et al.

Listing 1 Micro benchmark assembly in-
structions

s t a r t t i m e c o u n t e r
a d d l $1,%%eax
a d d l $1,%%eax
a d d l $1,%%eax
a d d l $1,%%eax
. . .

s t o p t i m e c o u n t e r

gered and the benchmark is repeatedly run while measuring
its execution time. Once the benchmark execution time is
close to what is expected for the target frequency, FTaLaT
detects a frequency transition and deduces the transition la-
tency.

The benchmark used for the measurement is a simple list
of add assembly operations, as presented in Listing 1. With
such structure, the benchmark exhibits a repeatable behavior
and is sensitive to frequency transitions as it is only made of
arithmetic operations. The benchmark is then a perfect tar-
get program to detect actual CPU transitions from execution
time variations.

The main issue with such methodology is to correctly
detect a frequency transition from execution times. Indeed,
background tasks may wakeup at anytime on the computer
for instance, perturbing the execution of the micro bench-
mark [Mazouz et al, 2010; Todd Mytkowicz and Amer Di-
wan and Peter F. Sweeney and Mathias Hauswirth, 2009].
As the benchmark runs are extremely short, it may then be
difficult to distinguish between measurement noise and ac-
tual frequency transitions. To solve that issue, FTaLaT relies
on statistical tests.

FTaLaT uses confidence intervals [Raj Jain, 1991] to de-
termine if an execution time can be considered as close to
what was observed previously at a given frequency. More
precisely, confidence intervals define a range of values one
can expect to be a good estimate of a population. They are
computed from the mean of several measurements, their stan-
dard deviation, and a constant called the t distribution value
that depends on the desired confidence level. The resulting
confidence intervals are used for two main purposes. First,
an execution time can be considered as close to others if
it belongs to their confidence interval. Second, a test called
the two samples t-test can determine if two sets of values are
distinct or not. Such usages are perfectly suited to the needs
of FTaLaT.

Thanks to the statistical tools at its disposal, FTaLaT can
determine if the execution times of the benchmark with the
initial and target frequency are distinct or not. It can then ig-
nore the cases where the benchmark execution times with
both frequencies are too close to conclude. It also deter-

mines if an execution time is similar to those achieved with
the target frequency in order to detect a frequency transition.
Finally, FTaLaT uses the t-test to determine if a detected
transition is a measurement noise or if it is confirmed over a
long period. In our implementation, confidence intervals are
built for a 95 % confidence level. A more detailed method-
ology is presented afterwards.

The general FTaLaT algorithm is as follows. First of all,
the micro benchmark is run 10,000 times while the initial
frequency is set, and again 10,000 times with the target fre-
quency. Then, both measurement sets are compared using
the t-test: if they are not found distinct, the procedure ends as
FTaLaT is not able to distinguish between execution times.
In practice, this never happened during our experiments. Be-
sides, the confidence interval of the mean of the target fre-
quency is built. Then, the initial frequency is set, the target
frequency is requested, and the micro benchmark is repeat-
edly executed while measuring its execution time. After ev-
ery execution, if the resulting execution time lies in the con-
fidence interval for the target frequency, a frequency transi-
tion is assumed. At this point, the transition is not certain
as the execution time may have changed because of various
external events. In order to ensure that the transition actually
occurred, the micro benchmark is run again 100 times while
measuring its execution time. Using the t-test, the set con-
sisting of the 100 final execution times is compared to that of
the target frequency. If they are determined similar, FTaLaT
considers that a frequency transition actually happened and
records the transition latency. Otherwise, the measurement
is started over as it may have been disturbed by external
noise. As a result, either FTaLaT aborts when the stability
conditions are not met, or a frequency transition delay is de-
termined.

For more details about the statistical methods employed,
or the detailed algorithm, the reader is referred to the scien-
tific paper presenting the system [Mazouz et al, 2013].

3 Experiments

3.1 Experimental setup

Our experiments have been conducted on three distinct ma-
chines, presented in Table 1, running a recent Linux system.
On each machine, FTaLaT measured the frequency transi-
tion latency between every available frequency pair. For sta-
tistical significance, each measurement was repeated 31 times
while an effort was made to reduce the sources of perfor-
mance instability on our measurements: to achieve high pre-
cision in our measurements, we use thread affinity for better
performance stability and the time stamp counter, via the
RDTSC instruction, for precise frequency-independent time
measurements.

Evaluation of CPU Frequency Transition Latency 3

Processor Xeon X5650 Xeon E3-1240 Core i7-3770
CPU type Intel Core Westmere Intel Core SandyBridge Intel Core IvyBridge

Micro-architecture Nehalem SandyBridge IvyBridge
Cores 2x 6 1x4 1x 4

Hardware threads 2x 6 1x4 1x 8
Min CPU Frequency 1.59 GHz 1.6 GHz 1.6 GHz
Max CPU Frequency 2.66 GHz 3.3 GHz 3.4 GHz

Table 1 Test machines description

3.2 Experimental results

Figures 1, 2, and 3 present the frequency transition latency
in micro-seconds on the vertical axis for the three test ma-
chines. The horizontal axis in each figure shows the differ-
ent target frequencies while the initial frequencies are repre-
sented using distinct plotting colors and symbols. For each
pair of initial and target frequency, we report the delay re-
quired to achieve an effective frequency transition, as mea-
sured by FTaLaT.

On the three machines, we observe that the transition de-
lay is not constant but rather depends on the initial and target
frequencies. The transition latency usually increases when
the target frequency is higher than the initial frequency. On
the other hand, when the frequency decreases, the transition
latency stays in a very tight range of small values. One can
also notice that the transition latency does not follow a sim-
ilar trend on all machines: while transition latency seems
to increase linearly when CPU frequency increases on the
SandyBridge machine, at least three steps appear on the
IvyBridge and the Westmere machines. Finally, the range
of possible latencies tends to tighten for more recent proces-
sor models.

The results obtained by FTaLaT are consistent with the
short description found in manufacturer documentation for
similar processors [Intel Corporation, 2011, 2012] where it
is stated that the voltage increase induced by a frequency in-
crease is performed in several steps while a frequency and
voltage reduction is described as a one-step operation. Our
tool is able to confirm that a similar behavior can be ob-
served on our experimental platforms.

In order to have a better view of the transition latency, we
have represented in Figure 4 the measured benchmark exe-
cution times on the IvyBridge machine when switching the
CPU frequency from 1.6 GHz to 3.4 GHz. While the verti-
cal axis reports the execution time of the successive runs of
the kernel, the horizontal axis represents the different iter-
ations until the transition is detected and confirmed. Notice
our system immediately detects the transition but runs addi-
tional measurements afterwards to confirm it.

We can observe two distinct steps in execution times: 1)
from iteration 1 to iteration 48 and 2) from iteration 50 to
149. The first step represents the executions at the 1.6 GHz
frequency, while the second step occurs when the bench-

0 us

1 us

10 us

 0 20 40 60 80 100 120 140 160

K
er

ne
l l

at
en

cy

Iteration number

latency

Fig. 4 Observed execution times of the assembly kernel for the pair
(1.6 GHz, 3.4 GHz) of CPU frequencies on the IvyBridge machine.

mark runs at 3.4 GHz. Thus, the CPU does not change its
operating frequency until iteration 49. The transition latency
computed by FTaLaT is then the elapsed time between the
request for a new frequency (at iteration 1) and the kernel’s
execution time change detection (iteration 50).

Additionally, when executing the kernel at iteration 49,
we can observe that the frequency transition provokes a short
pause, leading the kernel’s execution time to rise in a sig-
nificant extent. Thus, aside frequency latency, there is also
an overhead to transition frequency. The overhead directly
impacts the execution time of the running programs as the
processor can be considered as paused during the actual fre-
quency transition. In the presented measurement, the over-
head from transitioning frequencies can be deduced from the
extra-time spent in the 49th iteration and represents about
9.5 µs. Ideally, such overhead should also be taken into ac-
count when performing DVFS, for instance by avoiding non-
necessary frequency transitions.

4 Conclusion

FTaLaT is able to determine experimentally the frequency
transition latency on modern x86 64 platforms for every cou-
ple of available frequencies. It uses a rigorous statistical ap-
proach to distinguish between measurement noise and actual
information. The tool is distributed as open source software
for recent Linux systems.

4 Abdelhafid Mazouz et al.

● ● ●

●

●

●

●

●

●

●
●

●

●

●

Frequency transition latency estimation

IvyBridge (4 cores) machine
Tested CPU Frequencies

La
te

nc
y

(m
ic

ro
−

se
co

nd
s)

1.6 1.7 1.9 2 2.1 2.2 2.4 2.5 2.6 2.8 2.9 3 3.1 3.3 3.4

25
30

35
40

45
50

●
●

●

● ● ●
●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

1.6 GHz
1.7 GHz
1.9 GHz
2 GHz
2.1 GHz
2.2 GHz
2.4 GHz
2.5 GHz
2.6 GHz
2.8 GHz
2.9 GHz
3 GHz
3.1 GHz
3.3 GHz
3.4 GHz

Fig. 1 Observed frequency transition latency on the IvyBridge machine.

●

●

●
●

●

●
●

●

●

●

●

●

●

●

Frequency transition latency estimation

SandyBridge (4 cores) machine
Tested CPU Frequencies

La
te

nc
y

(m
ic

ro
−

se
co

nd
s)

1.6 1.7 1.8 2 2.1 2.2 2.3 2.4 2.6 2.7 2.8 2.9 3.1 3.2 3.3

20
30

40
50

60
70

● ● ● ● ● ● ● ● ●

●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

1.6 GHz
1.7 GHz
1.8 GHz
2 GHz
2.1 GHz
2.2 GHz
2.3 GHz
2.4 GHz
2.6 GHz
2.7 GHz
2.8 GHz
2.9 GHz
3.1 GHz
3.2 GHz
3.3 GHz

Fig. 2 Observed frequency transition latency on the SandyBridge machine.

From the experiments, we observed various interesting
phenomena such as the variable cost of a frequency increase
compared to the nearly fixed cost of a frequency decrease.
FTaLaT is then of great help to measure frequency transi-
tion latency and better understand the processors. Thus, it
can also be used, aside from its uses in DVFS control, to

track the advances in frequency transition delays or high-
light conception issues in processors.

References

Ge R, Feng X, chun Feng W, Cameron K (2007) CPU
MISER: A performance-directed, run-time system for

Evaluation of CPU Frequency Transition Latency 5

● ●

●
● ●

● ●

●

Frequency transition latency estimation

Westmere (16 cores) machine
Tested CPU Frequencies

La
te

nc
y

(m
ic

ro
−

se
co

nd
s)

1.596 1.729 1.862 1.995 2.128 2.261 2.394 2.527 2.66

10
20

30
40

50
60

● 1.596 GHz
1.729 GHz
1.862 GHz
1.995 GHz
2.128 GHz
2.261 GHz
2.394 GHz
2.527 GHz
2.66 GHz

Fig. 3 Observed frequency transition latency on the Westmere machine.

power-aware clusters. In: ICPP 2007. International Con-
ference on Parallel Processing, p 18, DOI 10.1109/ICPP.
2007.29

Hsu Ch, Feng Wc (2005) A power-aware run-time system
for high-performance computing. In: Proceedings of the
2005 ACM/IEEE conference on Supercomputing, IEEE
Computer Society, Washington, DC, USA, SC ’05, pp 1–
, DOI 10.1109/SC.2005.3, URL http://dx.doi.org/

10.1109/SC.2005.3

Intel Corporation (2011) Intel xeon processor E3-1200 fam-
ily datasheet

Intel Corporation (2012) Intel Xeon processor E5-1600/E5-
2600/E5-4600 product families

Mazouz A, Touati SAA, Barthou D (2010) Study of vari-
ations of native program execution times on multi-core
architectures. In: CISIS ’10: Proc. of the International
Conference on Complex, Intelligent and Software Inten-
sive Systems, IEEE Computer Society, Washington, DC,
USA, pp 919–924, DOI http://dx.doi.org/10.1109/CISIS.
2010.96, MuCoCos workshop

Mazouz A, Laurent A, Pradelle B, Jalby W (2013) Eval-
uation of cpu frequency transition latency. Computer
Science - Research and Development pp 1–9, DOI 10.
1007/s00450-013-0240-x, URL http://dx.doi.org/

10.1007/s00450-013-0240-x

Raj Jain (1991) The Art of Computer Systems Performance
Analysis : Techniques for Experimental Design, Measure-
ment, Simulation, and Modelling. John Wiley and Sons

Snowdon D (2010) Operating system directed power man-
agement. PhD thesis, University of New South Wales

Todd Mytkowicz and Amer Diwan and Peter F Sweeney and
Mathias Hauswirth (2009) Producing wrong data without
doing anything obviously wrong! In: Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS)

Wu Q, Martonosi M, Clark DW, Reddi VJ, Connors D, Wu
Y, Lee J, Brooks D (2005) A dynamic compilation frame-
work for controlling microprocessor energy and perfor-
mance. In: MICRO, pp 271–282

http://dx.doi.org/10.1109/SC.2005.3
http://dx.doi.org/10.1109/SC.2005.3
http://dx.doi.org/10.1007/s00450-013-0240-x
http://dx.doi.org/10.1007/s00450-013-0240-x

	Introduction
	How does it works?
	Experiments
	Conclusion

