Abstract

This paper addresses the data assignment problem in multi frame multi object tracking in video sequences. Traditional methods employing maximum weight bipartite matching offer limited temporal modeling. It has recently been shown [6, 8, 24] that incorporating higher order temporal constraints improves the assignment solution. Finding maximum weight matching with higher order constraints is however NP-hard and the solutions proposed until now have either been greedy [8] or rely on greedy rounding of the solution obtained from spectral techniques [15]. We propose a novel algorithm to find the approximate solution to data assignment problem with higher order temporal constraints using the method of dual decomposition and the MPLP message passing algorithm [21]. We compare the proposed algorithm with an implementation of [8] and [15] and show that proposed technique provides better solution with a bound on approximation factor for each inferred solution.

1. Introduction

Popularity of tracking by detection approaches [2] has led to a renewed interest in the data assignment problem in computer vision. In tracking by detection, a detection algorithm is first applied independently to find objects of interest in all frames. In the second step various detections across frames are associated with each other. This is typically done by associating a score with each such assignment, and finding the assignment with a maximum score. A good score function should capture the plausibility of an assignment. For example, low scores may be given to matching pairs which are visually dissimilar or are detected far from each other. In a crowded scenario such scores fail to disambiguate the correct assignment from other possible assignments. In these cases, one requires more complex scores. For example, scores which consider the velocity vectors implied by a matching, and constrain those to be physically valid are recommended for such cases. These are the scores we focus on in the current paper.

Figure 1: Higher Order Matching (campus sequence [2]).

Whatever the score function, one needs an algorithm for finding the optimal assignment. If the scores factor as a sum over individual assignments, then the problem can be solved via network flow algorithms [4, 25] or as a sum of bipartite matchings [23] defined over set of every two consecutive frames. However, such scores are not sufficiently descriptive, as they do not enforce more global properties of valid assignments, such as roughly constant velocity. To model such velocity constraints, one needs to consider pairs of assignments (i.e., a score which depends on three frames simultaneously), and the maximization problem becomes NP hard. We refer to such assignment problems with constraints involving more than 2 frames as higher order assignment/matching problems.

Several approximate maximization algorithms have recently been proposed to address NP hardness of higher order assignment problems [6, 8, 15]. Leordeanu and Hebert [15] relax the integrality and matching constraints (a detection in one frame must be assigned to exactly one detection each in previous and next frame). They show that an optimal solution to the relaxed problem corresponds to the eigenvector with largest eigenvalue of suitably created symmetric matrix. Since the solution obtained may not be feasible, they employ a greedy rounding scheme which iteratively removes the conflicting variables to generate a fea-
Collins [8] proposed a block ICM based technique for assignment problems with constraints involving two or more frames. Unlike [15], his method maintains a feasible solution at every step, and converges to a local minimum. It is similar to the iterated conditional modes (ICM) algorithm, but is applied at each step to a block of variables representing possible associations between two consecutive frames. The block-optimal conditional mode at each step is calculated as the solution to a bipartite matching problem.

Butt and Collins [6] have proposed to solve a series of independent higher order matching problems over frame triplets which are then merged into longer trajectories. The approach does not have the ability to revisit and correct a trajectory. Their method is designed specifically for frame triplets. Additionally there is no bound on approximation factor of the solution available with any of the discussed approaches [6] [8] [15].

The paper is structured as follows: we first present the higher order assignment problem in Section 2 followed by a brief review of the DD approach in Section 3. Next, in Section 4 we show how to apply the DD approach to our problem, and describe the resulting MPLP algorithm in Section 5 with its exactness results in Section 6. Finally, in Section 7 we provide experiments that demonstrate the utility of our approach. Specifically, we show that the proposed algorithm outperforms state of the art approaches [8] [15], yielding higher scoring assignments on various publicly available datasets [1] [2] [11], while also providing upper and lower bounds on the optimal score.

2. Problem Setup

We begin by formulating the score maximization problem. Denote the frames by 1,...,T. To simplify presentation, we assume that at each frame we have D detections indexed by 1,...,D. To these, we add a dummy detection at index 0 which handles partial trajectories. The goal is to find a set of paths from detections in the first frame to those in the last frame. Each such path corresponds to a single moving object.

Following [8], we note that a set of trajectories may be encoded via the union of all edges in the paths. We represent these paths via a set of boolean variables \(X_{t,i,j} \in \{0,1\}\) (with \(t \in \{1,...,T-1\}\) and \(i,j \in \{0,...,D\}\)) where \(X_{t,i,j} = 1\) iff there is an edge between detection \(i\) in frame \(t\) and detection \(j\) in frame \(t+1\). See Figure 1.

Since the \(X\) variables correspond to a set of disjoint paths, they must satisfy the constraint that each detection in frame \(t\) is assigned to a single detection in frame \(t+1\), and vice versa. This constraint need not hold for the dummy detection 0, which is meant to absorb partial paths. Thus
This can be simplified, by absorbing the local scores into

\[\sum_{i=0}^{D} X_{t,i,j} = 1 \quad \forall t \in \{1, \ldots, T-1\}, j \in \{1, \ldots, D\} \]

\[\sum_{j=0}^{D} X_{t,i,j} = 1 \quad \forall t \in \{1, \ldots, T-1\}, i \in \{1, \ldots, D\}. \]

The set of \(X \) that satisfy the above constraints will be denoted by \(\mathcal{M} \).

Next, we wish to construct a score function that maps each \(X \) to a number indicating how likely the proposed assignment is.

The first element in the cost function considers each variable \(X_{t,i,j} \) separately. Assume we have a weight \(W_{t,i,j} \) that is high if \(X_{t,i,j} \) is a likely edge. The corresponding contribution to the score function is \(W_{t,i,j} X_{t,i,j} \).

Such local score functions are useful, but do not represent more global properties of the assignment. For example, since we know that objects tend to move in straight lines, it makes sense to give higher scores to \(X \) assignments that correspond to such trajectories, as suggested in [8]. To evaluate a change in movement direction, three frames are needed. Thus, we add the element \(W_{t,i,j,k} X_{t,i,j} X_{t+1,j,k} \) where \(W_{t,i,j,k} \) is high if detections \(i,j,k \) in frames \(t, t+1 \) approximately lie on a line.

The overall score function is then:

\[S(X) = \sum_{t,i,j} W_{t,i,j} X_{t,i,j} + \sum_{t,i,j,k} W_{t,i,j,k} X_{t,i,j} X_{t+1,j,k}. \]

This can be simplified, by absorbing the local scores into the pairwise ones. Define:

\[W_{t,i,j,k} = \tilde{W}_{t,i,j} + \tilde{W}_{t+1,j,k}. \]

Since every pairwise score includes exactly one edge from previous and next layers the two formulations are equivalent. The score can then be rewritten as:

\[S(X) = \sum_{t,i,j,k} W_{t,i,j,k} X_{t,i,j} X_{t+1,j,k}. \]

The overall optimization problem is:

\[\max_{X \in \mathcal{M}} S(X). \]

As mentioned earlier, the problem is equivalent to what is better known in the theory community as the 3-matching problem. Problems of the above form are known to be NP hard. In fact, the 3-matching problem belongs to the Karp’s list of 21 NP-complete problems [13]. When \(W_{t,i,j,k} = 0 \) and only local costs are considered, then the problem becomes easy since it can be separated into \(T \) separate bipartite matching constraints. However, introducing the higher order scores makes the problem considerably more complicated, requiring approximate solution approaches. In what follows we describe a simple and effective scheme for pairwise scores, which can be generalized to other higher order score functions as well.

3. Dual Decomposition

Dual decomposition (DD) is a powerful method for approximating discrete optimization problems. We present a brief overview of DD that largely follows [21]. Consider a set of discrete variables \(X = X_1, \ldots, X_n \). Assume we have a set of functions \(\theta_f(X) \). The functions typically depend on only a subset of the variables \(X \) (e.g., \(\theta_f(X) \) may depend only on \(X_2, X_3 \)). We denote the scope of each \(\theta_f \) by \(S_f \) (e.g., \(S_f = \{2,3\} \) in the previous example). For notational convenience we write \(\theta_f(X) \) instead of \(\theta_f(X_{S_f}) \).

We are interested in maximizing the sum of all these functions, namely we wish to maximize \(\theta(X) \) defined as:

\[\theta(X) = \sum_f \theta_f(X). \]

We denote the above maximum value by \(\theta^* \).

DD is meant to address cases where maximizing the above sum is a hard problem (e.g., NP hard) but maximizing each \(\theta_f(X) \) (or similarly structured functions) individually is easy. The idea is to construct a bound on the max value and tighten this bound. Specifically, we define a set of dual variables \(\delta_{fi}(X_i) \) for each factor \(f \), each variable \(i \in S_f \) and each value \(X_i \) (e.g., in the example above we have \(\delta_{f2}(X_2), \delta_{f3}(X_3) \)). These dual variables may be thought of as a message from factor \(f \) to variable \(i \), indicating a prior on the value \(X_i \).

For a given \(\delta \) we define a new set of factor functions (often known as reparameterizations):

\[\theta_f^\delta(X) = \theta_f(X) - \sum_i \delta_{fi}(X_i), \]

and a new set of singleton factor functions:

\[\theta_i^\delta(X_i) = \sum_f \delta_{fi}(X_i). \]

Next, define the following dual function \(L(\delta) \):

\[L(\delta) = \sum_i \max_{X_i} \theta_i^\delta(X_i) + \sum_f \max_{X} \theta_f^\delta(X). \]

It is easy to see that \(L(\delta) \) upper bounds the \(\theta^* \) value for all values of \(\delta \). It is thus sensible to minimize \(L(\delta) \) w.r.t. \(\delta \), which is precisely what the DD framework proposes.

1 We do not construct a probabilistic model here, but it is possible to do so, as in [8].

2 Note that in the original \(\theta(X) \) we did not have singleton factors.
The function $L(\delta)$ may be minimized using a variety of approaches. One that is particularly simple and effective is to use block coordinate descent on the δ variables. There are many schemes for doing this. Here we use the MPLP algorithm \cite{21} which fixes all messages except those from a particular f to all variables i. The non-fixed messages are then updated to the value minimizing $L(\delta)$, which can be done in closed form. The updates are given by:

$$
\delta_{fi}(X_i) = -\delta^{-f}_{i}(X_i) + \frac{1}{|f|} \max_{X_i \setminus \xi} \left[\theta_f(X_f) + \sum_{i \in f} \delta^{-f}_{i}(X_i) \right],
$$

(9)

where $|f|$ denotes the number of variables in the factor θ_f, and we used $\delta^{-f}_{i}(X_i)$ to denote the sum of messages into i that are not from f. Namely:

$$
\delta^{-f}_{i}(X_i) = \sum_{f \neq f} \delta_{fi}(x_i).
$$

(10)

The update in Eq. (9) is performed simultaneously for all messages from f to its variables. This is guaranteed to monotonically decrease the objective $L(\delta)$ \cite{21}. Since $L(\delta)$ is not strictly-convex this scheme is not guaranteed to reach a global optimum [see \cite{5} for discussion of convergence for coordinate descent]. However, this is often not an issue, and can be rectified via smoothing if needed \cite{16} (smoothing is also helpful for accelerating sub gradient descent approaches, as proposed in \cite{18} and applied to DD in \cite{12,17}).

Eventually, we are interested in an assignment for X. This is typically done by taking the arg max of $\theta^*_f(X_i)$. Any such decoded assignment X provides a natural lower bound on θ^*, namely $\theta(X)$. Thus, if the upper bound $L(\delta)$ and the lower bound coincide, we know we have found the θ^* value and maximizing assignment.

4. Dual Decomposition for Higher Order (HO) Matching

We begin by rewriting Eq. (4) as a sum of relatively simple functions. Our functions will combine the matching constraints with the score elements from $S(X)$.

For convenience, we define a function $s_{t,i}(X)$ that contains the pairwise scores\footnote{The smoothing approach is easily applicable in our case. We do not pursue it here since the non-smoothed version already performs well.} corresponding to the i^{th} detection in the t^{th} frame:

$$
s_{t,i}(X) = \sum_{j,k} W_{t-1,j,i,k} X_{t-1,j,i} X_{t,i,k},
$$

(11)

so that:

$$
S(X) = \sum_{t,i} s_{t,i}(X).
$$

(12)

Next, define a function $\theta_{t,i}(X)$ that has a value of $-\infty$ if the i^{th} detection in the t^{th} frame violates the matching constraint\footnote{Pairwise score in the formulation refers to the score corresponding to matching a triplet in three adjacent frames.}. Otherwise $\theta_{t,i}(X)$ has the value corresponding to the score $S(X)$ for this detection. Namely:

$$
\theta_{t,i}(X) = \begin{cases}
 s_{t,i}(X) & \sum_j X_{t-1,j,i} = 1, \sum_j X_{t,i,j} = 1 \\
 -\infty & \text{otherwise}
\end{cases}
$$

(13)

Finally, define:

$$
\theta(X) = \sum_{t,i} \theta_{t,i}(X)
$$

(14)

Then it’s easy to see that Eq. (4) is equivalent to:

$$
\max_X \theta(X).
$$

(15)

We have thus turned Eq. (4) into a maximization of a sum of functions, as in the DD objective of Eq. (5), where f in Eq. (5) corresponds to a pair of indices (t, i) in Eq. (14). We next show how DD and the MPLP algorithm can be applied to this decomposition.

5. MPLP for Higher Order (HO) Matching

![Figure 2: Factor for MPLP based HO Matching](image)

To write the DD objective for Eq. (14), we introduce dual variables for messages between each factor (t, i) and the variables that participate in this factor. Recall that the factor (t, i) depends on the variables $X_{t-1,j,i}$ (i.e., matchings between frame t and $t+1$) and $X_{t-1,j,i}$ (i.e., matchings between frame $t-1$ and frame t). To reduce notational clutter we denote the message between factor (t, i) and $X_{t,i,j}$ by $\delta_{t,i,j}(X_{t,i,j})$ and the message between factor (t, i) and $X_{t-1,j,i}$ by $\delta_{t,i,j}(X_{t-1,j,i})$ (see figure 2).

Now define the reparameterized functions (see Eq. (6) and Eq. (7)):

$$
\theta_{t,i}^{\text{d}}(X) = \theta_{t,i}(X) - \sum_j \delta_{t,i,j}(X_{t,i,j}) - \sum_j \delta_{t,i,j}(X_{t-1,j,i}),
$$

(16)

5The i^{th} detection in t^{th} frame must be matched with exactly 1 detection in $(t-1)^{th}$ and $(t+1)^{th}$ frames.
and:
\[\theta_{t,i,j}(X_{t,i,j}) = \delta_{t,i,tj}(X_{t,i,j}) + \delta_{t+1,j,i}(X_{t,i,j}). \] (17)

The dual \(L(\delta) \) is therefore:
\[\theta(X) = \sum_{t,i} \max_{X_t,i} \theta_{t,i}(X) + \sum_{t,i,j} \max_{X_{t,i,j}} \theta_{t,i,j}(X_{t,i,j}). \] (18)

We now turn to the MPLP updates in Eq. (9). The max operation in these updates involves all variables in \(\theta_{t,i} \), namely 2D variables (assuming \(D \) matching pairs in each two consecutive frames). The cost of maximizing over all their assignments thus seems exponential at first. However, we note that \(\theta_{t,i} \) is non-infinite only for \(O(D^2) \) assignments satisfying the matching constraints, making the MPLP updates tractable. We first define \(W'_{t,k,i,j} \) to be the value inside the brackets of Eq. (9) for the case \(X_{t-1,k,i} = X_{t,i,j} = 1 \). and all other variables of type \(X_{t-1,\cdot,i} \) and \(X_{t,\cdot,i} \), as zero. This turns out to be:
\[W'_{t,k,i,j} = W_{t-1,k,i,j} - \delta_{t+1,j,i}(1) - \delta_{t-1,k,(i)}(1) - \sum_{k' \neq k} \delta_{t-1,k',(i)}(0) - \sum_{j' \neq j} \delta_{t+1,j',i}(0) \] (19)

Next, we note that the argmax in the MPLP update must correspond to such a case (namely that exactly two variables are 1). Thus we conclude:
\[\delta_{t,i,tj}(1) = -\delta_{t+1,j,i}(1) + \frac{1}{2D}\max_k W'_{t,k,i,j} \]
\[\delta_{t,i,tj}(0) = -\delta_{t+1,j,i}(0) + \frac{1}{2D}\max_k W'_{t,k,i,j}, \] (20)

Similarly:
\[\delta_{t,i,j}(1) = -\delta_{t-1,j,i}(1) + \frac{1}{2D}\max_{k,j',k'} W'_{t,j',i,k} \]
\[\delta_{t,i,j}(0) = -\delta_{t-1,j,i}(0) + \frac{1}{2D}\max_{k,j',k'} W'_{t,j',i,k}, \] (21)

The above MPLP updates monotonically decrease \(L(\delta) \), providing an upper bound on the MAP. To obtain an assignment from \(\delta \) we consider the singleton scores \(\theta_{t,i,j}(X_{t,i,j}) \) and return a matching that maximizes these. Namely, we solve:
\[\arg \max_{X \in M} \sum_{t,i,j} \delta_{t,i,j}(X_{t,i,j}) \] (22)

This can be solved efficiently by solving a maximum weight bipartite matching independently for each consecutive frames \(t \) and \(t+1 \). The overall algorithm is provided in Algorithm 1.

6This corresponds to a matching between \(k \) and \(i \) in frames \(t-1, t \) respectively, and between \(i \) and \(j \) in the frames \(t, t+1 \) respectively.

7Note that the simple MPLP decoding scheme will not add the constraint \(X \in M \). However, maximizing explicitly over \(M \) as in Eq. (22) makes sense, since the optimal \(X \) is constrained to be in \(M \).

6. Exactness for Local Scores

As with any approximation scheme, it is interesting to ask when our method will provide an exact answer. In what follows, we show that when the scores are only local, our method is exact. In other words, we consider the case that \(W_{t,i,j,k} = 0 \) (see Section 2 for notation). As mentioned earlier, in this case, the maximization of \(S(X) \) simply turns into \(T \) separate bipartite matching problems and can therefore be solved efficiently. However, it is not immediately clear that our DD scheme returns an exact solution in this setting. We show this below.

Recall that in the above case we have that \(W_{t,i,j,k} \) is given by (ignoring the 0.5 factor):
\[W_{t,i,j,k} = W_{t,i,j} + W_{t+1,j,k} \] (23)

We next simplify the DD objective in Eq. (18) for this parameter setting. The maximization \(\max_X \theta_{t,i}(X) \) here is particularly simple since it breaks down into two separate maximizations (for the previous and next frames). So \(\max_X \theta_{t,i}(X) \) turns out to be:
\[\max_j \left[W_{t-1,j,i} - \delta_{t,i,j}(1) + \delta_{t,i,j}(0) \right] - \sum_j \delta_{t,i,j}(0) + \max_j \left[W_{t,i,j} - \delta_{t,i,j}(1) + \delta_{t,i,j}(0) \right] - \sum_j \delta_{t,i,j}(0) \]

Given this simplified form, we can now take the dual of the minimization in Eq. (18). To obtain a dual, we first turn the minimization into a constrained problem by adding variables \(\xi_{t,i} \), \(\xi_{t,i,j} \), and constraints:
\[\xi_{t,i,j} \geq \xi_{t+1,j,i}(1) + \xi_{t,i,j}(0) \quad \forall j \]
\[\xi_{t,i} \geq \xi_{t,i,j}(1) + \xi_{t,i,j}(0) \quad \forall j \]
\[\xi_{t,i,j} \geq \delta_{t,i,tj}(X_{t,i,j}) + \delta_{t+1,j,i}(X_{t,i,j}) \quad \forall X_{t,i,j} \]

The DD objective is then to minimize:
\[\sum_{t,i,j} \left[\xi_{t,i} + \xi_{t,i,j} \right] - \sum_{t,i,j} \delta_{t,i,j}(0) - \sum_{t,i,j} \xi_{t+i,j} \] (24)

subject to the constraints above. We now take the dual of this LP. Introduce dual variables \(\mu_{t,i,j} \), \(\mu_{t,i,tj} \), \(\mu_{t,i,j} \) for the three sets of constraints above.\(^8\) In deriving the dual we actually obtain that \(\mu_{t,i,j} = \mu_{t+1,j,i} = \mu_{t,i,j} \), namely only the \(\mu_{t,i,j} \) variables are needed. The dual then simplifies to (up to factor 2):
\[\max \sum_{t,i,j} \bar{W}_{t,i,j} \mu_{t,i,j} \quad \text{s.t.} \sum_{j} \mu_{t,i,j} = 1, \sum_{j} \mu_{t,i,j} = 1, \mu \geq 0 \] (25)
First, note that the above LP can be solved separately for each \(t \) (since there is no interaction between different \(t \)).

Second, the LP for each \(t \) is in fact precisely the LP formulation of bipartite matchings, which is known to have an integral solution, and return the maximum bipartite matching (e.g., see Section 2.3 in [23]). Thus we conclude the minimum of the DD objective has the value of the optimal matching. Furthermore, it can be shown (see [21] section 1.7.2) that if MPLP converges to this value and the optimal matching is unique, then our decoding procedure Eq. (22) will find this optimal matching.

Finally, we emphasize that our procedure will in practice return the exact matchings in many other cases, where higher order factors are not zero. In the following empirical results we indeed observe several such cases.

7. Experiments

We next compare the proposed algorithm with self-developed implementations of block ICM [8] and Spectral [15]. Since Spectral requires eigenvalue decomposition and scales quadratically with \(T \) as opposed to our method and block ICM, we evaluate it only on the short toy problem sequences. In contrast block ICM as well as our proposed approach scales well over long sequences which is the subject of our second experiment. It may be noted that there could have been algorithms other than MPLP based approach used for solving the proposed problem formulation in this paper. We have also tried subgradient descent, and found that it was substantially slower than our approach, and depended heavily on initial step size. Accelerated subgradient descent (for the smoothed objective) [12, 18] is likely to outperform standard subgradient. However, empirical results in [16] show that coordinate descent outperforms accelerated gradient (although this is of course problem dependent). The comparison with subgradient based approach is therefore not included in our experiments.

Our first evaluation is on simple problems, constituting the first 3 frames of the publicly available datasets TUD [2], ETH [11] and PSU [1]. Table 1 shows the comparative results. The local scores have been calculated based upon the Euclidean distance between the detections. The pairwise scores are set as a distance between the detection in the middle frame and the centroid of detections in the first and third frames of the frame triplet (constant velocity assumption). This is one instance of higher order scores, and other scores utilizing appearance based cues could have been used. However, the purpose of experiments is to study the inference capabilities of the various algorithms with higher order matching constraints when the appearance based cues are ambiguous. Indicator scores consonant with the objective have been used accordingly without compromising the generality of the algorithmic approach. Accordingly the quality of solution is measured in terms of primal value obtained which better indicates the inference capability of the compared algorithms instead of more standard mismatch error percentage which may be affected by tuning chosen/given weights.

The result of experiments on the toy problem is shown in Table 1. Both block ICM and the proposed MPLP perform much better than the spectral technique. Furthermore, in 5/9 cases, MPLP finds a provably optimal solution (since the upper and lower bounds coincide).

Our second set of experiments focused on large problem sets containing complete sequences from various sources. Table 2 lists the results. Due to our experience in the toy problem and the scalability issues with Spectral approach we compare only to the block ICM approach. The local and pairwise scores have been set similarly as in toy problem case. Except for a short sequence (ETH Seq 2) MPLP outperforms block ICM approach on all tested datasets. One possible explanation for the results could be that the technique in [8] iterates through hard assignments as opposed to the message passing style of our method. It is thus more likely to get stuck in local minima than ours when the sequence is longer or the triplet weight is higher which is consistent with the observations in Table 1 and 2. Additionally MPLP is able to certify optimality in certain PSU sequences.

Figure 3 gives a visual comparison between MPLP and...
<table>
<thead>
<tr>
<th>Sequence</th>
<th>MPLP Primal</th>
<th>MPLP Dual</th>
<th>Block ICM Primal</th>
<th>Spectral Primal</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUD Campus</td>
<td>22505.59</td>
<td>23268.42</td>
<td>22505.59</td>
<td>17226.44</td>
</tr>
<tr>
<td>TUD Crossing</td>
<td>20325.02</td>
<td>20325.02</td>
<td>20325.02</td>
<td>6839.90</td>
</tr>
<tr>
<td>ETH Seq 1</td>
<td>7036.49</td>
<td>9558.66</td>
<td>6413.70</td>
<td>9513.79</td>
</tr>
<tr>
<td>ETH Seq 2</td>
<td>16031.69</td>
<td>23901.19</td>
<td>17011.80</td>
<td>10833.55</td>
</tr>
<tr>
<td>ETH Seq 3</td>
<td>25913.67</td>
<td>25913.67</td>
<td>25913.67</td>
<td>13605.31</td>
</tr>
<tr>
<td>ETH Seq 4</td>
<td>17730.87</td>
<td>17730.87</td>
<td>17730.87</td>
<td>14035.53</td>
</tr>
<tr>
<td>PSU Seq 1</td>
<td>13373.29</td>
<td>13373.29</td>
<td>13373.29</td>
<td>10051.84</td>
</tr>
<tr>
<td>PSU Seq 2</td>
<td>47747.79</td>
<td>47747.79</td>
<td>47747.79</td>
<td>35253.92</td>
</tr>
<tr>
<td>PSU Seq 3</td>
<td>36481.29</td>
<td>46298.73</td>
<td>25535.66</td>
<td>19679.38</td>
</tr>
</tbody>
</table>

Table 1: Comparison on first 3 frames of various sequences

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Num frames</th>
<th>MPLP Primal</th>
<th>MPLP Dual</th>
<th>Block ICM Primal</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUD Campus</td>
<td>71</td>
<td>915728.84</td>
<td>921786.11</td>
<td>907632.37</td>
</tr>
<tr>
<td>TUD Crossing</td>
<td>201</td>
<td>3213609.80</td>
<td>3390158.46</td>
<td>3203062.07</td>
</tr>
<tr>
<td>ETH Seq 01</td>
<td>56</td>
<td>490044.79</td>
<td>637833.04</td>
<td>472306.89</td>
</tr>
<tr>
<td>ETH Seq 02</td>
<td>9</td>
<td>130782.85</td>
<td>197381.71</td>
<td>148222.87</td>
</tr>
<tr>
<td>ETH Seq 03</td>
<td>999</td>
<td>33281471.13</td>
<td>34741881.37</td>
<td>33228228.12</td>
</tr>
<tr>
<td>ETH Seq 04</td>
<td>446</td>
<td>6884950.87</td>
<td>7024285.86</td>
<td>6880832.90</td>
</tr>
<tr>
<td>PSU Seq 01</td>
<td>61</td>
<td>708549.75</td>
<td>708549.75</td>
<td>708549.75</td>
</tr>
<tr>
<td>PSU Seq 02</td>
<td>121</td>
<td>5863545.86</td>
<td>5865261.80</td>
<td>5859410.28</td>
</tr>
<tr>
<td>PSU Seq 03</td>
<td>21</td>
<td>621002.00</td>
<td>678703.03</td>
<td>596113.92</td>
</tr>
</tbody>
</table>

Table 2: MPLP and Block ICM comparison on complete sequences

Figure 3: Tracking comparison on PSU Sequence 2

Figure 4: Change in primal and dual during MPLP iterations on PSU Seq 3

block ICM on a PSU sequence. All trajectories are color-coded with the matched detections appearing in same color. The assignment differences between MPLP and block ICM have been marked with white rectangles. MPLP performs better than block ICM in the presence of strong matching ambiguities arising due to multiple close detections.
ening. The approximation factor improves in both the cases with the number of iterations. In this problem instance, the bounds do not meet and we cannot conclude that the solution is optimal. However, in many cases (e.g., Table 1) the bounds do coincide and we obtain a certificate of optimality.

8. Conclusion

We presented an approach for optimizing higher order assignment problems that arise in the context of tracking by detection. Our approach relies on the dual decomposition framework which breaks the difficult assignment problem into simpler tractable tasks. We showed the inference capability of the algorithm in the presence of pairwise matching scores arising from detections in 3 consecutive frames. Such scores can successfully capture the constant velocity assumption which is a useful assignment cue in crowded scene when local scores are ambiguous. The strength of the algorithm is its simplicity. The algorithm is efficient and can scale well to long sequences. Our empirical results indicate that the proposed algorithm outperforms the state of the art compared with two recently introduced baselines.

The DD message passing framework is very general, and thus we expect it will be effective for other higher order factors that are introduced into the tracking problem. For example, one may consider the problems with constraints involving 4 or more frames. Such constraints can encode, for example, acceleration (improving over constant velocity assumption in this paper) or statistical similarity between detections.

Finally, the structure of the algorithm is natural for providing results in an online manner. As new frames arrive, we can perform a small number of message passes for the most recent frames, to obtain upper and lower bounds for the overall sequence.

Acknowledgments: This research is supported by the ISF Centers of Excellence grant 1789/11, and by the Israel Ministry of Science and Technology - Knowledge Center in Machine Learning and Artificial Intelligence.

References

The source code of the implementation will be made available.