Research Statement

Anup Bhattacharya

The primary motivation in my research is to design polynomial time approximation algorithms for computationally hard problems. I also want to design efficient algorithms for problems in various models of interest like online, streaming etc. Showing lower bounds is also an area of interest.

Problems studied and Results

Algorithms based on D^2-sampling Given dataset $X \subseteq \mathbb{R}^d$ and integer k, the goal in k-means problem is to find a set C of k centers that minimizes the Euclidean sum of squares cost. k-means++ uses D^2-sampling (points sampled with probability proportional to squared Euclidean distance) to choose centers and gives $O(\log k)$-approximation in expectation for k-means [3]. Our results on D^2-sampling based algorithms for k-means are summarized as follows.

- k-means++ seeding was conjectured to yield $O(\log d)$-approximation with high probability on d-dimensional instances [11]. We refuted the conjecture by giving construction of bad instances [8].
- Ding and Xu [14] gave a polynomial time approximation scheme (PTAS) for constrained k-means problem. We designed a simpler D^2-sampling based PTAS with much better running time [9].
- (Under submission) Given $\epsilon > 0$, a number l is computed such that Euclidean sum of squares cost with l centers sampled using D^2-sampling is at most ϵ times the optimal k-means cost. These l centers form a (k, ϵ)-coreset. We also give a D^2-sampling based heuristic to estimate intrinsic dimension of data.

Streaming algorithms for Sampling We designed a uniform sampling algorithm in the streaming setting [7]. Our algorithm uses $O(\log n)$-random bits, matching the randomness used by any offline algorithm.

Clustering with Oracle Ashtiani et al. [4] gave an efficient algorithm for k-means on well-separated datasets in a semi-supervised setting given a same-cluster oracle. Our results in this setting are as follows.

- (Under submission) We designed a $(1 + \epsilon)$-approximation for k-means without any separation assumption, and provided almost matching upper and lower bounds on the query complexity [1].
- (Under submission) Similar upper and lower bounds on query complexity were obtained for $(1 + \epsilon)$-approximation for correlation clustering where the number of optimal clusters is given.
- We are working on upper bounds where the query oracle is allowed to err with some probability $q < 1/2$.

Future Work

I am interested in working on problems of both theoretical and practical importance, and willing to learn new things. Some problems of particular interest are mentioned below.

Cluster Recovery This is inspired by the clustering with faulty oracle problem. Exact recovery algorithms are known for noisy correlation clustering [15] and stochastic block model [12] but they require all clusters to have size at least $\Omega(\sqrt{n})$ where n is the number of vertices. We don’t know of any lower bound on cluster sizes for exact recovery. It is interesting to show lower bounds or improve the recovery guarantees.

Clustering with Stability assumptions If the dataset satisfies stability conditions [10], then clustering as well as some hard combinatorial optimization problems become easy [2]. Awasthi et al. [5] recovered ground truth clustering by showing integrality of convex relaxations given that the dataset is generated in a specific manner. It is interesting to explore whether convex relaxations of clustering problems become integral when the instances are stable. It is also interesting to study the same under weak-stability conditions [6].

Testing Clusterability of Instances There are efficient algorithms [2] for stable instances of clustering problems. But how do we know whether an instance is stable or not? Czumaj et al. [13] studied cluster structure of graphs from property testing perspective. It would be interesting to know more on this.
References

