
✓ ✏

Department of Computer Science and

Engineering

CSV888 - Special Module in Database Systems

( 2015)

XML (Reference Book- Silberschatz, et al. OR
Ullman )

S. Bhalla
✒ ✑

Bhalla
Text Box
2023

Bhalla
Text Box
SIV851

Bhalla
Text Box
Special Topics in e-governance

Bhalla
Inserted Text
S



✓ ✏

[I] Data Types and Data Modelling [2]
• Structured Data

The data is stored and processed as per a known scheme

- BibTex

- DBMSs

• Semi-structured Data

The data is stored and processed based on the markings

-Markup Data : Latex, HTML, XML, . . .

-XML ( XML data + schema )

• Unstructured Data

The structure of data is not well defined

- text databases

- Newspaper repositories

- Government documents and file archives
✒ ✑



✓ ✏

[I] Data Classification [3]
• Accessing programs have knowlegde about →

the structure of data being accessed Structured Data

• Examples : Databases, Bibliography databases,

Bio-chemical databases

• Accessing programs have no knowlegde about →

the structure of data being accessed → depend on markup data

SemiStructured Data

• Examples : Web Browzers use HTML, Netscape

• Accessing programs have no knowlegde about →

the structure of data being accessed Unstructured Data

• Music, or Video files

• New Database Research on : Multimedia Databases✒ ✑



✓ ✏

[I] Web Services Interaction Diagram [4]

UDDI
Registry

WSDL

Web
Service

     WSDL location
1. Request

2. Download

3. Send SOAP
    message with XML
    document

✒ ✑



✓ ✏

[I] Web Services - Transactions [5]
• Client −→ sends a request SOAP message to server

<Envelope>

<Header>

<transId>1234</transId>

</Header>

<Body>

<Add>

<a>3</a>

<b>4</b>

</Add>

</Body>

</Envelope>

✒ ✑



✓ ✏

[I] Web Services - Transactions [6]
• Server performs the requested transaction

−→ sends the result as SOAP message to client

<Envelope>

<Header>

<transId>1234</transId>

</Header>

<Body>

<AddResponse>

<c>7</c>

</AddResponse>

</Body>

</Envelope>

✒ ✑



✓ ✏

[I] Semi-structured Data [7]
• 1. (a) Relational Data −→ Database Scheme −→ database

Structure of data −→ Directory

• 1. (b) Semi-structured Data −→ Self describing Schema

No separate description

• 2. Program ←→ [ Data ]

Typically - Program uses inbuilt type, scheme

←→ There is no data independence
✒ ✑



✓ ✏

[I] Semi-structured Data [8]
• Web ←→ Data

Information interchage, exchange requires −→ document structure

Semi-structured Data

{ name: ”Alan”, tel: 2157786, email: ”abc@wwexch.net” }
✒ ✑



✓ ✏

[I] Web Data - structure [9]
• Data elements have a document structure

- similar to documents

first

lastabs@ss.nettel
21577"Alan" abs@ss.net2157786

"Black"
"Alan"

email

tel
nameemail

name

✒ ✑



✓ ✏

[I] Web Data - Labels [10]
• Duplicate labels

{ name: ”Alan”, tel: 2157786, tel: 3782535 }

• Many labels or missing labels

{ person:

{name: ”Alan”, tel: 2157786, email: ”abc@wwexch.net” },

person:

{name: {first: ”Sara”, last:”Green”},

tel: 2136877, email: ”sara@the.xyz.edu”},

person:

{name: ”Fred”, tel: 4257783, Height: 183 }

}
✒ ✑



✓ ✏

[I] Semi-structured Data [11]
• Type definitions in C++ can not support frequent changes

• XML −→ Self Describing

+ Serialization for transfer

+ Byte stream

+ Waste of space ?

+ High interoperability

+ easy web transfer and interpretation

+ type can be dropped (if not in use)
✒ ✑



✓ ✏

[I] Conversion of XML data [12]
• 1. Many ways to represent data in XML

+ easy to convert relation −→ XML data

+ Conversion of XML documents −→ database (not simple in few cases)

• 2. XML data (may contain, web data, documents)

+ multiple attributes, missing attributes . . .

• 3. Represented as a graph

1. edge labelled

2. rooted and directed acyclic graph ( DAG )

with unique path from root ( Tree )

✒ ✑



✓ ✏

[I] Representing XML Contents [13]

Graph
a) cycle
b) no  root Graph

a) rooted
b) acyclic

Graph is Tree
a) rooted
b) acyclic
c) unique path 
     from root to 
     every node

DAG:  Directed acyclic   graph

• XML uses edge-labeled tree [ Hierarchical Edges]
✒ ✑



✓ ✏

[I] Representing XML Contents [14]
• 4. Search / Query on XML documents (database contents)

+ Graph Searching Algorithms,

a) Depth first search

b) Breadth first search

42

name

age email

(a) Tree  for  XML  data (b) Semi−structured data
       expression
       ( ssd−expression)

email

person

42 agb@abc.comagb@abc.com AlanAlan

name age

person

✒ ✑



✓ ✏

[I] Selected Data in XML form [15]
• Two main approaches for web data

- 1. native-XML : storing XML documents in the same format

- 2. XML-embeded : storing XML documents after reformatting as

relational tables

• 1. native-XML

- Free Software : Software Berkeley DB XML IBM DB2 with Pure XML

uses X-Query and HTTP, XML data formats

• 2. ORACLE [Oracle11g has XML support] XDK (XML Development

Kit)

many tools in the tool kit

Transformed documents are stored in the relational Database
✒ ✑



✓ ✏

[I] XML: Extensible Markup Language [16]
• Defined by the WWW Consortium (W3C)

• Originally intended as a document markup language not a

database language

• Documents have tags giving extra information about

sections of the document

E.g. <title> XML < /title >< slide > Introduction . . . < /slide >

• Model : Tree Structured data

• Extensible :

Users can add new tags, and separately specify how the tag should

be handled for display

• XML Inflience HTML −→ XHTML
✒ ✑



✓ ✏

[I] A Comparision of XML and HTML [17]
XML HTML XHTML

----------------------------------------------

Metalanguage SGML-based XML-based

----------------------------------------------

describing and formatting and formatting and

structuring data displaying data displaying data

----------------------------------------------

Tags not predefined Predefined tags Predefined tags

----------------------------------------------

Case-sensitive Case-insensitive Case-sensitive.

-----------------------------------------------

documents must documents need documents must

be well formed not be well formed be well formed

---------------------------------------------------

elements require Some end tags elements require

end tags are optional end tag

---------------------------------------------------
✒ ✑



✓ ✏

[I] Comparision (Contd.) [18]
XML HTML XHTML

--------------------------------------------------------

Empty elements must Empty elements are Empty elements must

be terminated, not terminated, be terminated,

e.g., <img /> e.g. <img > e.g., <img />

--------------------------------------------------------

Attribute values Unquoted attribute Attribute values

must be quoted values are allowed must be quoted

--------------------------------------------------------

No attribute The minimal form No attribute

minimalization of an attribute minimalization

is allowed is allowed is allowed

-------------------------------------------------------

Tags must be nested Tags may be nested Tags must be nested

properly, without with overlapping properly, without

overlapping overlapping

--------------------------------------------------------
✒ ✑



✓ ✏

[I] Querying and Transforming XML Data [19]
• 1. Translation of information from one XML schema to another

• 2. Querying on XML data

• Above two are closely related ←− handled by same tools

• Standard languages - XML querying/translation

+ XPath

- Simple language consisting of path expressions

+ XSLT : Extensible Stylesheet Language Transformations

- Simple language for translation (XML ←→ XML and XML −→ HTML)

+ XQuery

- An XML query language with a rich set of features

• Many other languages have been proposed;

some of these −→ basis for the Xquery standard + XML-QL, Quilt,

XQL, ...
✒ ✑



✓ ✏

[I] Tree Model of XML Data [20]
• Query and transformation languages ←− a tree model of XML data

• An XML document is modeled as a tree (nodes −→ elements and

attributes)

+ Element nodes −→ children nodes - can be attributes or subelements

+ Text in an element: modeled as a text node child of the element

+ Children of a node: ordered as per the order in the XML document

+ Element and attribute nodes (except for the root node) have a single

parent, which is an element node

+ The root node has a single child - the root element of the document

• We use the terminology of nodes, children, parent, siblings, ancestor,

descendant, etc., using the above tree model of XML data.
✒ ✑



✓ ✏

[I] Nesting XML elements [21]

<UK>

</UK>

<Country>

</Country>
</City>

<City>
<Street>

</Street>

<House>

</House>

<Owner>
<FirstName>John</FirstName>

<FamilyName>Smith</FamilyName>

</Owner>

✒ ✑



✓ ✏

[I] XPath [22]
• XPath is used to address (select) parts of documents using

path expressions

• A path expression is a sequence of steps separated by ”/”

+ Think of file names in a directory hierarchy

• Result of path expression: set of values that along with their

containing elements/attributes match the specified path

• E.g. /bank-2/customer/name evaluated on the bank-2 data

we saw earlier returns

< name > Joe </name >

< name > Mary </name >

• E.g. /bank-2/customer/name/text( )

returns the same names, but without the enclosing tags
✒ ✑



✓ ✏

[I] XPath (Cont.) [23]
• The initial ”/” denotes root of the document (above the top-level tag)

• Path expressions are evaluated left to right

+ Each step operates on the set of instances produced by the previous

step

• Selection predicates may follow any step in a path, in [ ]

+ E.g. /bank-2/account[balance > 400]

- returns account elements with a balance value greater than 400

- /bank-2/account[balance] returns account elements containing a

balance subelement

• Attributes are accessed using ”@”

+ E.g. /bank-2/account[balance > 400]/@account-number

- returns the account numbers of those accounts with balance > 400

+ IDREF attributes are not dereferenced automatically
✒ ✑



✓ ✏

[I] Xpath data model [24]

Root node

Element node 
of root element

Element node

Attribute node

Namespace node

Comment node

• An abstract data model - on which XML path language is based.
✒ ✑



✓ ✏

[I] Functions in XPath [25]
• A set of functions in XPATH function library

+ for converting and translating data

+ results −→: 1. Node set 2. Boolean 3. Number 4. String

+ Example : name() - returns a QUALIFIED NAME (name of a node)

• XPath provides several functions

+ The function count() at the end of a path

−→ counts the number of elements in the set generated by the path

- E.g. /bank-2/account[customer/count() > 2]

= Returns accounts with > 2 customers

= Also, for testing position (1, 2, ..) of node w.r.t. siblings

• Boolean connectives and, or, function not() can be used in predicates

• IDREFs can be referenced using function id()

+ id() can also be applied to sets of references such as IDREFS

- even to strings containing multiple references separated by blanks

+ E.g. /bank-2/account/id(@owner)

−→ all customers referred to from owners attribute of account elements.✒ ✑



✓ ✏

[I] More XPath Features [26]
• Operator ” | ” used to implement union

+ E.g. /bank-2/account/id(@owner) | /bank-2/loan/id(@borrower)

- gives customers with either accounts or loans

- However, ”|” cannot be nested inside other operators.

• ”//” can be used to skip multiple levels of nodes

+ E.g. /bank-2//name

- finds any name element anywhere under the /bank-2 element,

regardless of the element in which it is contained.

• A step in the path can go to:

parents, siblings, ancestors and descendants of the nodes generated by

the previous step, not just to the children

+ ”//”, described above, is a short from for specifying ”all descendants”

+ ”..” specifies the parent.
✒ ✑



✓ ✏

[I] Use of XSLT for transformation [27]

processor

document
Plain text

XHTML/HTML

XML document
VoiceXML

(Vector graphics)
SVG

(Print media)
PDF

Altered

XSLT

XML

SGML

(Wireless device)
WML/WAP

SMIL
(Multimedia)

(Speech)

(Web browser )

✒ ✑



✓ ✏

[I] XSLT [28]
• A stylesheet stores formatting options for a document,

+ usually separately from document

+ Example HTML style sheet −→ font colors and sizes for headings, etc.

• The XML Stylesheet Language (XSL) originally designed

−→ for generating HTML from XML

• XSLT is a general-purpose transformation language

+ Can translate XML to XML, and XML to HTML

• XSLT transformations are expressed using rules called templates

+ Templates combine selection using XPath

with construction of results
✒ ✑



✓ ✏

[I] XSLT Templates [29]
• Example of XSLT template with match and select part

<xsl:template match="/bank-2/customer">

<xsl:value-of select="customer-name"/>

</xsl:template>

<xsl:template match="."/>

• The match attribute of xsl:template specifies a pattern in XPath

• Elements in the XML document matching the pattern −→

processed by the actions within the xsl:template element

+ xsl:value-of selects (outputs) specified values (here, customer-name)

• If an element matches several templates, only one is used

−→ depends on a complex priority scheme/user-defined priorities

+ We assume only one template matches any element

• Elements that do not match any template are output as is

• The <xsl:template match=”.”/ > template matches all elements that

do not match any other template,

−→ used to ensure that their contents do not get mixed with output.
✒ ✑



✓ ✏

[I] Creating XML Output [30]
• Any non-tag text, and any tag that is not in the xsl namespace is

output as is

• E.g. to wrap results in new XML elements.

<xsl:template match="/bank-2/customer">

<customer>

<xsl:value-of select="customer-name"/>

</customer>

</xsl;template>

<xsl:template match="."/>

• Example output:

< customer > John < /customer >

< customer > Mary < /customer >
✒ ✑



✓ ✏

[I] Structural Recursion [31]
• Action of a template can be to recursively apply templates to the

contents of a matched element Example

<xsl:template match="/bank">

<customers>

<xsl:template apply-templates/>

</customers >

<xsl:template match="/customer">

<customer>

<xsl:value-of select="customer-name"/>

</customer>

</xsl:template>

<xsl:template match="."/>

• Example output:

<customers>

< customer > John < /customer >

< customer > Mary < /customer >

< /customers>
✒ ✑



✓ ✏

[I] Joins in XSLT [32]
• XSLT keys allow elements to be looked up (indexed) by values of

subelements or attributes

+ Keys must be declared (with a name) and, the key() function can then

be used f or lookup. E.g.

* <xsl:key name= ”acctno” match= ”account” use= ”account-number”

/ >

* <xsl:value-of select=key(”acctno”, ”A-101”)

• Keys permit (some) joins to be expressed in XSLT

<xsl:key name="acctno" match="account" use="account-number"/>

<xsl:key name="custno" match="customer" use="customer-name"/>

<xsl:template match="depositor".

<cust-acct>

<xsl:value-of select=key("custno", "customer-name")/>

<xsl:value-of select=key("acctno", "account-number")/>

</cust-acct>

</xsl:template>

<xsl:template match="."/>
✒ ✑



✓ ✏

[I] Sorting in XSLT [33]
• Using an xsl:sort directive inside a template causes all elements match-

ing the template to be sorted

+ Sorting is done before applying other templates

• E.g.

<xsl:template match="/bank">

<xsl:apply-templates select="customer">

<xsl:sort select="customer-name"/>

</xsl:apply-templates>

</xsl:template>

<xsl:template match="customer">

<customer>

<xsl:value-of select="customer-name"/>

<xsl:value-of select="customer-street"/>

<xsl:value-of select="customer-city"/>

</customer>

<xsl:template><xsl:template match="."/>
✒ ✑



✓ ✏

[I] XQuery [34]
• XQuery is a general purpose query language for XML data

• Currently being standardized by the World Wide Web Consortium

+The textbook description is based on a March 2001 draft of the stan-

dard.

• Alpha version of XQuery engine available free from Microsoft

• XQuery is derived from the Quilt query language, which itself borrows

from SQL, XQL and XML-QL

• XQuery uses a

for ... let ... where .. result ...

syntax

for ↔ SQL from

where ↔ SQL where

result ↔ SQL select

let allows temporary variables ↔ has no equivalent in SQL
✒ ✑



✓ ✏

[I] FLWR Syntax in XQuery [35]
• For clause uses XPath expressions, and variable in for clause ranges

over values in the set returned by XPath

• Simple FLWR expression in XQuery

+ find all accounts with balance > 400, with each result enclosed in

an < account− number > .. < /account− number > tag

for $x in /bank-2/account

let $acctno := $x/@account-number

where x/balance > 400

return < account− number > $acctno < /account− number >

• Let clause not really needed in this query, and selection can be done

In XPath. Query can be written as:

for $x in /bank-2/account[balance>400]

return < account− number > $X/@account-number

< /account− number >
✒ ✑



✓ ✏

[I] Path Expressions and Functions [36]
• Path expressions are used to bind variables in the for clause, but can

also be used in other places

+ E.g. path expressions can be used in let clause, to bind variables to

results of path expressions

• The function distinct( ) can be used to removed duplicates in path

expression results

• The function document(name) returns root of named document

+ E.g. document(”bank-2.xml”)/bank-2/account

• Aggregate functions such as sum( ) and count( ) can be applied to

path expression results

• XQuery does not support groupby, but the same effect can be got by

nested queries, with nested FLWR expressions within a result clause

! More features
✒ ✑



✓ ✏

[I] Joins [37]
• Joins are specified in a manner very similar to SQL

for $b in /bank/account,

$c in /bank/customer,

$d in /bank/depositor

where $a/account-number = $d/account-number

and $c/customer-name = $d/customer-name

return < cust-acct > $c </cust-acct >

• The same query can be expressed with the selections specified

as XPath selections:

for $a in /bank/account

$c in /bank/customer

$d in /bank/depositor[

account-number = $a/account-number and

customer-name = $c/customer-name]

return < cust-acct > $c $a</cust-acct >
✒ ✑



✓ ✏

[I] Changing Nesting Structure [38]
• The following query converts data from the flat structure for bankin-

formation into the nested structure used in bank-1

<bank-1>

for $c in /bank/customer

return

<customer>

$c/*

for $d in /bank/depositor[customer-name = $c/customer-name],

$a in /bank/account[account-number=$d/account-number]

return $a

</customer>

</bank-1>

• $c/* denotes all the children of the node to which $c is bound, without

the enclosing top-level tag

• Exercise for reader: write a nested query to find sum of account bal-

ances, grouped by branch.
✒ ✑



✓ ✏

[I] XQuery Path Expressions [39]
• $c/text() gives text content of an element without any subele-

ments/tags

• XQuery path expressions support the ”− > ” operator for dereferencing

IDREFs

+ Equivalent to the id( ) function of XPath, but simpler to use

+ Can be applied to a set of IDREFs to get a set of results

+ June 2001 version of standard has changed ”− > ”to” => ”
✒ ✑



✓ ✏

[I] Sorting in XQuery [40]
• Sortby clause can be used at the end of any expression. E.g. to return

customers sorted by name

for $c in /bank/customer

return < customer > $c/* < /customer > sortby(name)

• Can sort at multiple levels of nesting (sort by customer-name, and by

account-number within each customer)

<bank-1>

for $c in /bank/customer

return

<customer>

$c/*

for $d in /bank/depositor[customer-name=$c/customer-name],

$a in /bank/account[account-number=$d/account-number]

return <account> $a/* </account> sortby(account-number)

</customer> sortby(customer-name)

</bank-1>
✒ ✑



✓ ✏

[I] Functions and Other XQuery Features [41]
• User defined functions with the type system of XMLSchema

function balances(xsd:string $c) returns list(xsd:numeric) {

for $d in /bank/depositor[customer-name = $c],

$a in /bank/account[account-number=$d/account-number]

return $a/balance

}

• Types are optional for function parameters and return values

• Universal and existential quantification in where clause predicates

+ some $e in path satisfies P

+ every $e in path satisfies P

• XQuery also supports If-then-else clauses
✒ ✑



✓ ✏

[I] Application Program Interface [42]
• There are two standard application program interfaces to XML data:

+ SAX (Simple API for XML)

* Based on parser model, user provides event handlers for parsing events

- E.g. start of element, end of element

- Not suitable for database applications

+ DOM (Document Object Model)

* XML data is parsed into a tree representation

* Variety of functions provided for traversing the DOM tree

* E.g.: Java DOM API provides Node class with methods

getParentNode( ), getFirstChild( ), getNextSibling( )

getAttribute( ), getData( ) (for text node)

getElementsByTagName( ), ...

• Also provides functions for updating DOM tree
✒ ✑



✓ ✏

[I] Storage of XML Data [43]
• XML data can be stored in

+ Non-relational data stores

* Flat files

- Natural for storing XML

- But has all problems discussed in Chapter 1 (no concurrency, no recov-

ery, ...)

* XML database

- Database built specifically for storing XML data, supporting DOM

model and declarative querying

- Currently no commercial-grade systems

+ Relational databases

- Data must be translated into relational form

- Advantage: mature database systems

- Disadvantages: overhead of translating data and queries
✒ ✑



✓ ✏

[I] Storing XML in Relational Databases [44]
• Store as string

! E.g. store each top level element as a string field of a tuple in a

database

+ Use a single relation to store all elements, or

+ Use a separate relation for each top-level element type

- E.g. account, customer, depositor

- Indexing:

>> Store values of subelements/attributes to be indexed, such as

customer-name and account-number as extra fields of the relation, and

build indices

>> Oracle 9 supports function indices which use the result of a function

as the key value. Here, the function should return the value of the

required subelement/attribute
✒ ✑



✓ ✏

[I] Storing XML in Relational Databases (Contd) [45]
+ Benefits:

! Can store any XML data even without DTD

! As long as there are many top-level elements in a document, strings

are small compared to full document, allowing faster access to individual

elements.

+ Drawback: Need to parse strings to access values inside the elements;

parsing is slow.
✒ ✑



✓ ✏

[I] Storing XML as Relations (Cont.) [46]
• Tree representation: model XML data as tree and store using relations

nodes(id, type, label, value)

child (child-id, parent-id)

+ Each element/attribute is given a unique identifier

+ Type indicates element/attribute

+ Label specifies the tag name of the element/name of attribute

+ Value is the text value of the element/attribute

+ The relation child notes the parent-child relationships in the tree

- Can add an extra attribute to child to record ordering of children

+ Benefit: Can store any XML data, even without DTD

+ Drawbacks:

- Data is broken up into too many pieces, increasing space overheads

- Even simple queries require a large number of joins, which can be slow
✒ ✑



✓ ✏

[I] Storing XML in Relations (Cont.) [47]
• Map to relations

+ If DTD of document is known, can map data to relation

+ Bottom-level elements and attributes are mapped to attributes of

relations

+ A relation is created for each element type

! An id attribute to store a unique id for each element

! all element attributes become relation attributes

! All subelements that occur only once become attributes

- For text-valued subelements, store the text as attribute value

- For complex subelements, store the id of the subelement

! Subelements that can occur multiple times represented in a separate

table

- Similar to handling of multivalued attributes when converting ER dia-

grams to tables
✒ ✑



✓ ✏

[I] Storing XML in Relations (Cont.) [48]
+ Benefits:

! Efficient storage

! Can translate XML queries into SQL, execute efficiently, and then

translate SQL results back to XML

+ Drawbacks: need to know DTD, translation overheads still present
✒ ✑



✓ ✏

[I] References - Books for reading [49]

• Database Systems Concepts, by A. Silberschatz, H. F. Korth, S.

Sudarshan, McGraw Hill, 4th/ 5th/ 6th edition (2011)

•Database Systems: The Complete Book, H. Garcia-Molina, J. Ullman,

and J. Widom. The second edition, 2008

✒ ✑



✓ ✏

[I] References - Main Web Resources [50]
The list below comprises only the major

Web sites, several of which can serve as portals to

further online resources.

http://www.w3.org/

The Web site of the World Wide Web Consortium

(W3C) contains all the latest W3C standards,

related to XML technologies and the Semantic

Web.

http://www.xml.org/

The XML Industry Portal, hosted by OASIS, pro-

vides an independent resource for news and infor-

mation about the industrial and commercial

applications of XML.
✒ ✑



✓ ✏

[I] References - Main Web Resources [51]

http://www.oasis-open.org/cover/

The XML Cover Pages is a comprehensive Web-

accessible reference collection.

http://www.xml.com/

Articles, tutorials, software and other XML-related

information hosted by O’Reilly.

http://www.semanticweb.org/

The portal of the Semantic Web community.

http://www.garshol.priv.no/download/

xmltools/

A comprehensive list of free XML tools and soft-

ware by Lars Marius Garshol.

✒ ✑



✓ ✏

[I] References - Main Web Resources [52]
http://wdvl.com/Authoring/Languages/XML/

The XML section of the Web Developer’s Virtual

Library (WDVL), which contains links to major

XML sites and specifications.

http://www.ucc.ie/xml/

A list of Frequently Asked Questions (FAQ) about

XML.

http://msdn.microsoft.com/xml/

Microsoft Developer Network’s XML developer

center, which aggregates content and resources

about XML.

✒ ✑



✓ ✏

[I] References - Main Web Resources [53]
http://www.w3schools.com/

Free tutorials on XML, XSL, XPath and other XML

technologies.

http://www.xmlbooks.com/

Charles F. Goldfarb’s "All the XML Books in Print"

Web site.

http://www.oasis-open.org/

The Web site of OASIS (the Organization for the

Advancement of Structured Information

Standards).

✒ ✑



✓ ✏

[I] References - Main Web Resources [54]
http://xml.apache.org/

The Apache XML Project (part of the Apache Software Foundation).

http://java.sun.com/xml/

Java technology and XML.

http://metalab.unc.edu/xml/

Cafe con Leche’s XML news and resources.

http://www.alphaworks.ibm.com/xml/

IBM’s XML Web site for early adopter developers.

http://www.idealliance.org/XMLRoadmap/

WEB/TOC/xmlrotoc.htm

The "XML Road Map" a guide to XML standards.

✒ ✑



✓ ✏

[I] References - Main Web Resources [55]
http://www.ontoweb.org/

The Web site of a European Union-funded project

about ontology-based information exchange for

knowledge management and electronic commerce.

http://www.perfectxml.com/

A collection of information on different aspects of XML.

http://www.xml-acronym-demystifier.org/

A project that is intended to collect and published

information about the various acronyms prevalent

http://www.xmlfiles.com/

XML-related resources.

✒ ✑



✓ ✏

[I] References - Main Web Resources [56]
http://www.xmlhack.com/

A news Web site for XML developers.

http://www.xmlmag.com/

An online XML magazine.

http://www.xmlsoftware.com/

An index of XML-related software resources.

http://www.egroups.com/group/xml-dev/

An informal unmoderated list to support those who are

interested in the implementation and development of XML.

http://www.xml.org/xml-dev/

The XML developers’ mailing list.
✒ ✑




