Domain Specific Multi-stage Query Language for Medical Document Repositories

S. Bhalla
Model Driven Querying
Introduction

- **Specialized Domains**
 - Biomedical, agriculture, medical/healthcare
 - Require → Effective search and query mechanisms
 - Insufficient → Search-engine like Key-words based searches

- **Medical domain**
 - ✓ Complex
 - ✓ Example,
 - **Query** → Information about → "general AIDS information" → medical search tool, such as PubMed
 - **Result** → 1000s of documents ≤ Different aspects of AIDS are displayed
 Such as, treatment, drug therapy, transmission, diagnosis, and history
 - ✓ Medical professionals → Specific technical articles (particular topic)
 - ✓ General public → General information (disease or medicine).

- **How to retrieve medical query related information**
Introduction (1)

- Medical Information
 - Knowledge → Evolved over 10s of years
 - Contains → Well defined terms and processes

- Available on the Web
 - Patient Specific Information
 - Knowledge-based Information

Web Documents

Medical Literature

EHRs

Patient-encounter Recordings
Introduction (2)

- **Complexity** → Knowledge-based Resources

- **Heterogeneous** → End-user groups
 - Patients, researchers, doctors and other experts

- **Variation** → Information Requirements
 - Patient-treatment, self-diagnosis, general health information

- **Structure** → Medical Documents
 - Scientific papers, encyclopedias and other literature
 - Unique, well-defined
Introduction (3): Specialized Documents

- **Case of medical encyclopedias**
 - Comprehensive medical guide → Patients and clinicians
 - Authoritative source → NLM (National Library of Medicine)
 - Paper based resources → Electronic format
 - Frequently referred → Medical domain users
 - Example, MedlinePlus, WebMD, ADAMS, Merriam-Webster Medical Dictionary
Introduction (4): Why Query

- **External knowledge base** → Clinicians
- **Evidence based medicine**
- **During** → different stages of point-of-care
- **Assessment plan of treatment**
 - Patient diagnosis
- **Improve Quality of Care**
 - Authoritative information required
- **Self Diagnosis**
 - During → Early appearance of symptoms
 - Personal Knowledge → Patients and their relatives
The Underlying Structure

The Hierarchical Structure

- Topic of the Document
- Subtopics
 - Subtopic 1
 - Subtopic 2
 - Subtopic n
- Content
 - Content topic 1
 - Content topic 2
 - Content topic n
- Miscellaneous/Related Content

Flow of Contents ➔ Organized as stages of point-of-care
Introduction (5): The End Users

- **Variable**
 - Demographical Characteristics
 - Tasks/Purpose
 - Computer/Domain Expertise

- **Practitioners and Researchers**
 - **Well-versed**
 - Domain knowledge and terminologies
 - **Require**
 - Precise, complete, accurate and timely results

- **Patients and their relatives**
 - **NOT Well-versed**
 - Domain knowledge and terminologies
 - **Require**
 - General information
The Medical Queries

- **Evidence-based Queries**
 - **Intent**: Diagnostic
 - **Raised by**: Clinicians/Experts
 - **Target resources**: Online Medical Repositories (e.g. medical encyclopedia)
 - **Example**: “Cases where *helicobacter bacteria* causes *peptic ulcer*”

- **Hypothesis-directed Queries**
 - **Intent**: Non-diagnostic
 - **Raised by**: Novice users/patients
 - **Target resources**: Online Medical Repositories (e.g. medical encyclopedia)
 - **Example**: “Treatment in case of *high fever* and *dizziness*”
The Query Flows

- **Occurrence** → Evidence-based and hypothesis-directed queries
- **Represent** → Stages of information seeking
- **Comprise** → Varying levels of query complexity

1. **Simple**
 - Cases = ?
 - where
 - Causes = "Fever"

2. **Medium**
 - Causes = "Fever"
 - Symptoms = "Vomiting"
 - Medication = ?

3. **Complex**
 - Cases = ?
 - where
 - Symptoms = "Fever"
 - AND
 - Symptoms = "High Blood Pressure"

4. **Recursive**
 - Causes = "Vomiting"
 - More Symptoms = "Fever"
 - Remedies = ?

Clinician's Knowledge Base = Web document Repository Layout
Query: Find chances of "Cancer Risk" in patients showing symptom "Sleep Deprivation" and have been exposed to "Radiation" (but not "Environmental Toxins" and does not have "Genetic Disorder").

- **Results** → Large in number, irrelevant
- **Failure** → Keyword search, domain-specific search tools
- **Require** → Precise and easy-to-use database style query methods
 - **Key steps:**
 1. Schema → understandable by users
 2. Identify → Resources to query
 3. Identify → Granularity of results
Bridging the Gap

- **Aim: Effective Online Medical Information**
 - Transform \rightarrow Document Repository \rightarrow User-Level Schema
 - Enable \rightarrow High-level Query Language
 - Target Audience \rightarrow Skilled and semi-skilled users
 - Utilize \rightarrow Query capabilities of a database query language

- **Assist Domain Experts \rightarrow Using Query language**
 - Facilitate
 - In-depth Queries
 - Granular Results
Querying the New Way

Resource
- **WebMD**
- **MedlinePlus**

Search Method
- Google
- Yahoo!

Medical Expert
- Traditional Method

Results returned
- Lack specificity
- Long list of full documents
- Trustworthiness of resources → unknown

User-level Schema

High-level Query language

Query Method

Medical Expert
- Proposed Method

Results returned
- Specific, granular
- Segments of documents → query criteria
- Trustworthy/Authoritative sources only
Proposed Approach
Key Features

- **User-Level Schema**
 - Universal, concept-level schema
 - Attributes
 - Understandable → Domain experts and novice users
 - Query-able
 - Granular results

- **Multi-stage Query Language**
 - Map multi-stage diagnostic process → Step-by-step Query Flow
 - Interactive Querying → View Results → Add concept
 - Continuous query refinement
 - Supported Queries → Simple, Medium, Complex, Recursive
Outline

Two-step framework

- Offline Process ➔ Create User-level schema
- Online Process ➔ Enable Multi-stage Query Language

Offline Process

- Use ➔ Web segmentation algorithm, Domain concepts
- Result ➔ Automatic creation of a User-level schema

Online Process

- Enable ➔ Multi-stage Query Language
- Use ➔ User-level schema
- Results ➔ Granular, segment-level, context-based
The Method

Two-step Framework
Data Model
Data Model

- Tree Structured Repository

Example: MedlinePlus Medical Encyclopedia
Data Model (1)

- Document Repository is a collection of documents, \(R = \sum_{i=1}^{n} d_i \)

- A document \(d_i \in R \) is a collection of segments, \(d_i = \sum_{j=1}^{m} f_j \)

- A segment \(f_j \in d_i \) is a pair of subtopic label and content enclosed, \(f_j = (s_j + c_j) \)

- A query on a single/multiple documents can be defined as,
 - \(Q = \) return all segments \(f \in \sum d_i \) where \(s \in \) queried concepts and \(c \) satisfies entered values

- The result of this query can be defined as,
 - \(Res = \) all segments \(f \in \sum d_i \)

- The subtopic label considers the user context for query
Data Model (2): The Schema

- Attributes \rightarrow Diagnostic concepts/terms
- Understandable by expert and novice users
- Do not change frequently

MedlinePlus Medical Encyclopedia Articles

![Diagram](chart.png)
Data Model (3): A XML Document

- Document corresponding to “Aarskog Syndrome”

Example: MedlinePlus Medical Encyclopedia
Query: Find if "Oxygen therapy" work for the treatment of "Chronic Respiratory Failure" and symptoms are "Lethargy" OR "Shortness of breath".

<table>
<thead>
<tr>
<th>Advanced search: MedlinePlus</th>
<th>Proposed Method</th>
</tr>
</thead>
</table>
| ![MedlinePlus](image) | **SELECT** attribute = “Disease_name”
WHERE
Attribute “Disease_name” = “Chronic Respiratory Failure”
AND
Attribute “Treatment” = “Oxygen therapy”
AND
Attribute “Symptoms” = “Lethargy”
OR
Attribute “Symptoms” = “Shortness of breath” |
Data Model (5): Granular Results

- Each result is a segment, combination of:
 - Concept/context in query
 - Item of concern (content enclosed in a segment)
An Example

Query: Find other symptoms where “chronic kidney failure” is caused by “anemia”

- Queried segment \rightarrow Symptoms
- Segments in Query \rightarrow Causes = “anemia” and Disease_name = “Chronic kidney failure”

- Result Segment \rightarrow Symptoms
- Context \rightarrow disease_name = “chronic kidney failure” & causes = “anemia” (SYMPTOM - segment)
Next Step ➔ Multi-stage Query Language
Proposed Query Language (1)

- **XQBE** ➔ **Medical document repositories**
 - Create queries ➔ Drag and drop interface
 - **Query**: “Find cases where a person is inflicted with “peptic ulcer” due to “helicobacter pylon bacteria”

- **Attributes** ➔ **understandable by end users**
 1. **Case** = `disease_name`
 - **Value** = ??
 2. **Due to** = **Causes**
 - **Value** = “helicobacter pylon bacteria”
 3. **Inflicted with** = **Symptoms**
 - **Value** = “peptic ulcer”

- **Query Effort**
 - Minimal learning curve
 - Computer-expertise ➔ not required
Proposed Query Language (2)

- **Multi-stage Query-by-Concept**
 - Concept → Query-able attribute
 - Topic, sub-topic, medical concept

- **Query Effort**
 - Dynamic selection of attributes
 - No computer expertise

- **Query Process**

An Example: Cases where fever is caused due to infliction of Pneumonia and Tuberculosis
Another Example

- **Query:** Find cases where 3 clinical concepts ("cough", "no sore-throat", and "had no sterol injection") occur in context of symptoms occur along with a concept having sub-key (i.e. "non sterol injection at the left side")

- **Possible → XQBE on Specialized Medical Repositories** ✔️

- **Possible → Multi-stage Query-by-concept Query Language** ✔️
Evaluation Plan

- **Data Sets**
 - **MedlinePlus document repository**
 - Health topics (900+), encyclopedia (4000+), drugs (12000+)
 - **Set of Queries**
 - 50 test queries (multi-staged)
 - Using diseases and medication etc.

- **Quantitative Studies**
 - **Evaluation Metrics**
 - Accuracy of segment extraction (schema creation) → Precision and Recall
 - Reduction in search space

- **Qualitative Studies**
 - **Usability Studies**
 - Actual End-users
 - Query Performance
Initial Achievements

- HTML → XML as per proposed model
- XQuery on XML
- Integration with XQBE
- Query by concept → Enumeration using paper and pencil
Challenges

- **Scalability** \rightarrow Similarly structured repositories
- **List** \rightarrow Query operations needed
- **Implementation** \rightarrow Above query operations
- **Query Language** \rightarrow User Interface
Related Work

- **Domain-specific Information Retrieval**
 - Similarity and popularity based models **→** Insufficient for domain experts
 - “Information granulation” needs to be considered in huge document repositories

- **Form-based Query Interfaces**
 - Easy-to-use
 - Limited access to the database
 - Complex queries **→** large number of forms
 - Varying medical concepts **→** large number of fields in forms

- **Beyond single page web search results**
 - Provide granular results for user’s search
 - Return segments from multiple or related web documents as results

- **High-level Graphical Query Languages**
 - Easy-to-use and understand
 - Little or no programming effort required by the user
 - Common languages **→** QBE, XQBE
Summary and Conclusions

- Proposed → Multi-stage Query Language

1. Aim → Effective online medical resources

2. Key feature → User-Level Schema

3. Facilitates → Granular/Context-based Results

4. Support → Healthcare Experts

5. Minimize → Learning curve for novice users

6. Reduce → Dependency on general-purpose search engines

- Provide → Web user level activity → no or little programming effort → Healthcare experts
References (1)

References (2)

Questions