1. Show that for any collection of hash function H, there exists x, y such that

$$\sum_{h \in H} \delta_h(x, y) \geq |H| \left(\frac{1}{m} - \frac{1}{n} \right)$$

where n and m are the sizes of universe and table respectively.

2. Let U be a universe of all possible keys of size N. Then prove that the size of a set of perfect hash functions that map n keys into a table of $(m \geq n)$ is at least

$$\frac{C(N, n)}{(N/n)^n \cdot C(m, n)}$$

Here $C(a, b)$ denotes number of choices of b subsets from a set of a objects.

3. If a, b are chosen uniformly at random then show that the hash function $h(x) = (ax + b) \mod p$ maps $x \neq 0$ uniformly at random to one of the p values, i.e. probability $(h(x) = i) = 1/p$ for $0 \leq i \leq p-1, p$ is prime. Further show that for a pair of elements x, y, probability $(h(x) = i, h(y) = j) = probability(h(x) = i).probability(h(y) = j)$.

4. Let $|T| = p$ where p is a prime. Define a hash function from $U = p^k$ to T as follows. For a key $x = \langle s_1, s_2, \ldots, s_k \rangle$ with $0 \leq s_i \leq p-1$, and $a = \langle a_1, a_2, \ldots, a_k \rangle$, $a_i < p$, the hash function $h_a(x) = \sum_i a_i \cdot s_i \mod p$.

Prove that h_a defines a strongly universal hash family.

5. Suppose T is an ordered table of n keys x_i, $1 \leq i \leq n$ drawn uniformly from $(0, 1)$. Instead of doing the conventional binary search, we use the following approach.

Given key y, we make the first probe at the position $s_1 = \lceil y \cdot n \rceil$. If $y = x_{s_1}$, we are through. Else if $y > x_{s_1}$, we recursively search for y among the keys $(x_{s_1} \ldots x_n)$

else recursively search for y among the keys $(x_1 \ldots x_{s_1})$.

At any stage when we search for y in a range $(x_l \ldots x_r$, we probe the position $l + \lceil \frac{(y-x_l)(r-l)}{x_r-x_l} \rceil$.

We are interested in determining the expected number of probes required by the above searching algorithm.
In order to somewhat simplify the analysis, we modify the algorithm as follows. In round i, we partition the input into $n^{1/2^i}$ sized blocks and try to locate the block that contains y and recursively search within that block. In the i-th round, if the block containing y is $(x_l \ldots x_r)$, then we probe the position $s_i = l + \lceil \frac{(y-x_l)(r-l)}{x_r-x_l} \rceil$. We then try to locate the $n^{1/2^i}$-sized block by sequentially probing every $n^{1/2^i}$-th element starting from s_i.

Analyze the expected number of probes required. (Analyze the expected number of probes in each round using Chebychev’s inequality).

6. Given a set of points on the real-line with coordinates $x_1, x_2 \ldots x_n$, we want to determine if there is a subset $x_i, x_{i+1} \ldots x_{i+m-1}$ with separation distances $d_i \leq m$. Design a $O(n)$ algorithm for this problem.

7. Given a set S of n points in a plane - design a linear time algorithm to find the smallest enclosing circle of S.

8. Show how to implement the contraction algorithm (the original n contractions) in

 (i) $O(n^2)$ time. You may want to use a adjacency matrix representation. To choose a random edge first choose a random vertex with probability proportional to its degree and then choose one of the neighbours at random. Prove that this works as required.

 (ii) $O(m \log n)$ time.

Extend the solution of the first part to weighted graphs.