1. Let \(n \) be a positive integer and let \(G \) be the set

\[
G = \{ k \mid k \text{ is an integer with } 0 < k < n \text{ and } \gcd(k, n) = 1 \}
\]

Prove that \(G \) is a group under operation \(\otimes \) defined as multiplication modulo \(n \).

2. Prove the Chinese remainder theorem using the previous question. In other words prove that:

If \(m \) and \(n \) are positive integers with \(\gcd(m, n) = 1 \), then there are integers \(a \) and \(b \) such that \(am + bn = 1 \).

3. Let us define a group with two generators \(\{a, b\} \) and let us say that the following relations hold \(ab = b^2a \) and \(ba = a^3b \).

(a) Reduce \(aba^{-1}b^{-1} \) to a string of length 1.
(b) Reduce \(bab^{-1}a^{-1} \) to a string of length 2.
(c) Prove that \(b = a^{-2} \).