1. Find the fallacy in the proof of the following “theorem.”

Theorem 1.1 A symmetric and transitive binary relation is an equivalence.

Proof. Let \mathcal{R} be a symmetric and transitive binary relation on a set A. For any pair of elements $(a, b) \in \mathcal{R}$, it follows from symmetry that $(b, a) \in \mathcal{R}$. Further, from transitivity it follows that if (a, b) and (b, a) are in \mathcal{R} then (a, a) and (b, b) are in \mathcal{R}. Hence \mathcal{R} is also reflexive and therefore it is an equivalence. \square

2. Can you prove that there exists no bijection between \mathbb{N}^ω and \mathbb{N}?

3. Given any preorder \mathcal{R} on a set A, prove that the *kernel* of the preorder defined as $\mathcal{R} \cap \mathcal{R}^{-1}$ is an equivalence relation.

4. Consider any preorder \mathcal{R} on a set A. We give a construction of another relation as follows. For each $a \in A$, let $[a]_\mathcal{R}$ be the set defined as $\{b \in A | a R b$ and $b R a\}$. Now consider the set $B = \{[a]_\mathcal{R}| a \in A\}$. Let \mathcal{S} be a relation on B such that for every $a, b \in A$, $[a]_\mathcal{R} S [b]_\mathcal{R}$ if and only if $a R b$. Prove that \mathcal{S} is a partial order on the set B.

1