Problem 1.1 (60=10+10+10+10+10+10 marks) Attempt problems 1 to 6 of Sec 1.9 of [Spielman2015].

Problem 1.2 (10 marks) Construct a non-symmetric matrix \(M \) with two distinct eigen values \(\mu \) and \(\nu \) such that
\[
M \psi = \mu \psi \quad \text{and} \quad M \phi = \nu \phi
\]
But \(\psi \) and \(\phi \) are not orthogonal, i.e.,
\[
\psi^T \phi \neq 0
\]

Problem 1.3 (30 marks) Let \(M \) be an \(n \times n \) real symmetric matrix with largest eigen value \(\lambda \) and corresponding eigen vector \(x \). Assume that \(x \) maximises the Rayleigh quotient
\[
\frac{x^T M x}{x^T x}
\]
Extend the proof of this fact given in Spielman’s notes to prove the Spectral Theorem for real symmetric matrices, i.e., there exist real numbers \(\lambda_1, \ldots, \lambda_n \) and \(n \) mutually orthogonal unit vectors \(\psi_1, \ldots, \psi_n \) and such that \(\psi_i \) is an eigenvector of \(M \) of eigenvalue \(\lambda_i \), for each \(i, 1 \leq i \leq n \).