COL202: Discrete Mathematical Structures. I semester, 2020-21.
Amitabha Bagchi
Tutorial Sheet 9: Recurrences and generating functions.
17 December 2020
Important: The question marked with a $\boldsymbol{\uparrow}$ is to be submitted via gradescope by $11: 59 \mathrm{PM}$ on the day that you have your tutorial.

Problem 1

In the 2-dimensional plane we have n lines such that no two lines are parallel and no three lines intersect at one point. If R_{n} is the number of regions created by these n lines, find a recurrence for R_{n} and solve it.

Problem 2

Find a recurrence relation for the number of bit strings of length n that contain the string 01 . Try and solve it if possible.

Problem 3

Find a recurrence relation for the number of bit strings of length n that contain three consecutive 0 s. Try and solve it if possible.

Problem 4

Let A_{n} be the $n \times n$ matrix with 2's on its main diagonal, 1 's in all positions next to a diagonal element, and 0 's everywhere else. Find a recurrence relation for d_{n}, the determinant of A_{n}. Solve this recurrence relation to find a formula for d_{n}.

Problem 5

In how many ways can $3 r$ balls be chosen from $2 r$ red balls, $2 r$ blue balls and $2 r$ green balls?

Problem 6

Evaluate the following sums:

Problem 6.1

$$
\binom{n}{1}+2 \cdot\binom{n}{2}+\cdots+i \cdot\binom{n}{i}+\cdots+n \cdot\binom{n}{n}
$$

Problem 6.2

Given that $k \leq m$ and $k \leq n$

$$
\binom{n}{0} \cdot\binom{m}{k}+\binom{n}{1} \cdot\binom{m}{k-1}+\binom{n}{2} \cdot\binom{m}{k-2}+\cdots+\binom{n}{k} \cdot\binom{m}{0}
$$

Problem 6.3

$$
\binom{2 n}{n}+\binom{2 n-1}{n-1}+\cdots+\binom{2 n-i}{n-i}+\cdots+\binom{n}{0}
$$

Problem 7

Prove that

$$
\binom{r}{0}^{2}+\binom{r}{1}^{2}+\binom{r}{2}^{2}+\cdots+\binom{r}{i}^{2}+\cdots+\binom{r}{r}^{2}=\binom{2 r}{r}
$$

And also that the generating funtion for $a_{r}=\binom{2 r}{r}$ is

$$
A(z)=(1-4 z)^{-1 / 2}
$$

Problem 8

Let $f(n, k, h)$ be the number of ordered representations of n as a sum of exactly k integers each of which is $\geq h$. Find the generating function $\sum_{n} f(n, k, h) x^{n}$. By ordered representation we mean that that if $n=10, k=3$ and $h=2$ then we will consider $5+3+2$ and $2+3+5$ as two different representations.

Problem 9

In each part below the sequence $\left\{a_{n}\right\}_{n \geq 0}$ satisfies the given recurrence. Find the ordinary power series generating function in each case and solve to find a_{n} where possible.

Problem 9.1

$$
a_{n+1}=3 a_{n}+2,\left(n \geq 0, a_{0}=0\right) .
$$

Problem 9.2

$$
a_{n+1}=\alpha a_{n}+\beta,\left(n \geq 0, a_{0}=0\right)
$$

Problem 9.3

$$
a_{n+2}=2 a_{n+1}-a_{n},\left(n \geq 0, a_{0}=0, a_{1}=1\right) .
$$

Problem 9.4

$$
a_{n+1}=a_{n} / 3+1,\left(n \geq 0, a_{0}=0\right) .
$$

Problem 10

Let $f(n)$ be the number of subsets of $\{1,2, \ldots, n\}$ that contain no two consecutive integers. Find a recurrence for $f(n)$ and try to solve it to the extent possible using generating functions.

Problem 11

In the Double Tower of Hanoi problem there are $2 n$ disks of n different sizes, 2 of each size. As before we are to move all the disks from tower 1 to tower 3 using tower 2 for help, without placing a disk of (strictly) larger radius on top of a disk of (strictly) smaller radius. How many moves will it take to transfer the disks if disks of the same radius are indistinguishable from each other.

Problem 12

Solve the recurrence

$$
g_{n}=g_{n-1}+2 g_{n-2}+\cdots+n g_{0}, \text { for } n>0
$$

with $g_{0}=1$. Try and solve it in multiple ways.

Problem 13

In the following assume that $A(x), B(x)$ and $C(x)$ are the ordinary power series generating functions of the sequences $\left\{a_{n}\right\}_{n \geq 0},\left\{b_{n}\right\}_{n \geq 0}$ and $\left\{c_{n}\right\}_{n \geq 0}$ respectively. With this notation attempt the following problems:

Problem 13.1

If $c_{n}=\sum_{j+2 k \leq n} a_{j} b_{k}$, express $C(x)$ in terms of $A(x)$ and $B(x)$.

Problem 13.2

If

$$
n b_{n}=\sum_{k=0}^{n} 2^{k} \frac{a_{k}}{(n-k)!},
$$

express $A(x)$ in terms of $B(x)$.

Problem 14

Solve the recurrence $g_{0}=0, g_{1}=1$ and

$$
g_{n}=-2 n g_{n-1}+\sum_{k=0}^{n}\binom{n}{k} g_{k} g_{n-k}, \text { for } n>1,
$$

using an exponential generating function.

