COL202: Discrete Mathematical Structures. I semester, 2020-21.
Amitabha Bagchi
Tutorial Sheet 8: Basic counting.
28 November 2020
Important: The question marked with a $\boldsymbol{\uparrow}$ is to be submitted via gradescope by 11:59PM on the day that you have your tutorial.

Problem 1

Suppose you have n men and n women and you have to seat them around a circular table so that men and women sit alternately. How many ways can you seat them?

Problem 2

Suppose there are n tennis players. How many ways can we pair them up so that everyone has a partner to play a singles match?

Problem 3

Given a set A of size m and set B of size n count the number of

1. Relations from A to B.
2. Total functions from A to B.
3. Partial functions from A to B.
4. Surjections from A to B (assume $m \geq n$). These could be partial or total functions.
5. Injections from A to B. These could be partial or total. State whatever you assume about m and n.

Problem 4

Given a plane with integer points of the type (x, y) where both x and y are integers, we define a lattice path from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ to be a set of line segments that go from a point (i, j) to $(i+1, j)$ or $(i, j+1)$, i.e., all steps in the path either move right or up. Count the number of lattice paths between $(0,0)$ and (m, n) ?

Problem 5

A lattice path from $(0,0)$ to (n, n) is called a Catalan path if it only visits points (x, y) such that $y \leq x$. Count the number of Catalan paths between $(0,0)$ and (n, n). (Hint. Argue that every lattice path that is not a Catalan path must touch or cross the line $y=x+1$. Find a bijection between the set of lattice paths that touch or cross the line $y=x+1$ and the set of lattice paths between $(-1,1)$ and (n, n).)

Problem 6

We say that a function π is a derangement of size n if it is a bijection from $\{1, \ldots, n\}$ to itself (i.e., it is a permutation) and it has no fixed points, i.e., $\forall i: \pi(i) \neq i$. Count the number of derangements of size n. The solution you submit must use Inclusion-Exclusion. Separately also try to see if you can solve the problem without the use of Inclusion-Exclusion, but you don't have to submit the other solution(s).

Problem 7

Prove the following identities regarding binomial coefficients by making counting arguments. Give as many different arguments as possible

Problem 7.1

$$
\binom{n}{k}\binom{k}{j}=\binom{n}{j}\binom{n-j}{k-j} .
$$

Problem 7.2

$$
\binom{n}{k}\binom{n-k}{j}=\binom{n}{j}\binom{n-j}{k} .
$$

Problem 7.3

$$
\sum_{i=0}^{k}\binom{m}{i}\binom{n}{k-i}=\binom{m+n}{k}
$$

Problem 8

Show that any finite connected graph on n vertices must have two vertices with the same degree.

Problem 9

Let A be any set of 20 numbers chosen from the arithmetic progression $1,4,7, \ldots, 100$. Prove that there must be two distinct integers in A which sum to 104 .

Problem 10

Consider any five points in the interior of a square of side 1 . Show that there are two points which are at most $1 / \sqrt{2}$ units apart. Is this this the best possible bound i.e. is there a placement of five points such that the maximum interpoint distance is exactly $1 / \sqrt{2}$.

