COL202: Discrete Mathematical Structures. I semester, 2020-21.

Amitabha Bagchi

Tutorial Sheet 6: Relations and Partial Orders.

12 November 2020

Important: The question marked with a ♠ is to be submitted via gradescope by 11:59PM on the day that you have your tutorial.

Problem 1 [1]

Prove that for binary relations $\mathcal{R}, \mathcal{R}'$ from A to B and S, S' from B to C, if $\mathcal{R} \subseteq \mathcal{R}'$ and $S \subseteq S'$ then $\mathcal{R} \circ S \subseteq \mathcal{R}' \circ S'$.

Problem 2 [1]

Given $\mathcal{R} \subseteq A \times B$ and $\mathcal{S}, \mathcal{T} \subseteq B \times C$, prove or find an example that disproves

1.
$$\mathcal{R} \circ (\mathcal{S} \cup \mathcal{T}) = (\mathcal{R} \circ \mathcal{S}) \cup (\mathcal{R} \circ \mathcal{T})$$

2.
$$\mathcal{R} \circ (\mathcal{S} \cap \mathcal{T}) = (\mathcal{R} \circ \mathcal{S}) \cap (\mathcal{R} \circ \mathcal{T})$$

3.
$$\mathcal{R} \circ (\mathcal{S} \setminus \mathcal{T}) = (\mathcal{R} \circ \mathcal{S}) \setminus (\mathcal{R} \circ \mathcal{T})$$

Problem 3 [1]

Show that a relation \mathcal{R} on a set A is

- 1. antisymmetric if and only if $\mathcal{R} \cap \mathcal{R}^{-1} \subseteq \mathcal{I}_A$.
- 2. transitive if and only $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{R}$.
- 3. connected if and only if $(A \times A) \setminus \mathcal{I}_A \subseteq \mathcal{R} \cup \mathcal{R}^{-1}$.

Problem 4 [1]

Given a relation \mathcal{R} on a set A, we define a sequence of relations as follows: we say $\mathcal{R}_0 = \mathcal{I}_A$ and $\mathcal{R}_{i+1} = \mathcal{R}_i \circ \mathcal{R}$. Based on this we define the reflexive transitive closure of \mathcal{R} as

$$\mathcal{R}^* = \bigcup_{i>0} \mathcal{R}_i.$$

- 1. Prove or disprove that $S = \mathbb{R}^* \cup (\mathbb{R}^*)^{-1}$ and $T = (\mathbb{R} \cup \mathbb{R}^{-1})^*$ are both equivalence relations.
- 2. Prove or disprove S = T.

Problem 5 [1]

Consider any preorder \mathcal{R} on A. For each $a \in A$ let $[a]_{\mathcal{R}} = \{b \in A : a\mathcal{R}b \wedge b\mathcal{R}a\}$. Now let $B = \{[a]_{\mathcal{R}} : a \in A\}$. Define a relation $\mathcal{S} \subseteq B \times B$ as follows: $[a]_{\mathcal{R}}\mathcal{S}[b]_{\mathcal{R}}$ whenever $a\mathcal{R}b$. Show that \mathcal{S} is a partial order.

Problem 6

Suppose we have a set S and a partially ordered set (T, \preceq_T) , let \mathcal{F} be the set of functions $f: S \to T$, i.e., all the functions from S to T. We define a relation, \preceq , on \mathcal{F} as follows: $f \preceq g$ if $f(x) \preceq_T g(x)$ for all $x \in S$. Show that \preceq is a partial order on \mathcal{F} .

Problem 7 ♠

Let (S, \leq_S) and (T, \leq_T) be two posets defined on disjoint sets S, T. The linear sum $S \oplus T$ of the two posets is $(S \cup T, \leq)$ where for $x, y \in S \cup T$ we say $x \leq y$ if either $x \leq_S y$ or $x \leq_T y$ or if $x \in S$ and $y \in T$. Show that \leq is a partial order on $S \cup T$. Draw an example of a graph for which a normal spanning tree's tree order can be represented as the linear sum of two tree orders.

Problem 8

Two partially ordered sets (S, \leq_S) and (T, \leq_T) are said to be isomorphic if there exists a bijection $f: S \to T$ such that $x \leq_S y$ if and only if $f(x) \leq_T f(y)$ for all $x, y \in S$. The function f is called an isomorphism. Also a function $f: S \to T$ is said to be increasing if $x \leq_S y$ implies $f(x) \leq_T f(y)$ for all $x, y \in S$. A function $f: S \to T$ is said to be strictly increasing iff for $x \neq y$, $x \leq_S y$ implies $f(x) \leq_T f(y)$ and $f(x) \neq f(y)$ (this could also be denoted $f(x) \prec_T f(y)$).

Show by example that an increasing function need not be an isomorphism.

Problem 9

Suppose (S, \preceq_S) and (T, \preceq_T) are isomorphic and $f: S \to T$ is an isomorphism between them. Show that f and f^{-1} are both strictly increasing functions.

References

[1] S. Arun-Kumar, Lecture notes for *Introduction to Logic for Computer Science.*, IIT Delhi, 2002. http://www.cse.iitd.ernet.in/~sak/courses/ilcs/logic.pdf