COL202: Discrete Mathematical Structures. I semester, 2020-21.
Amitabha Bagchi
Tutorial Sheet 6: Relations and Partial Orders.
12 November 2020
Important: The question marked with a $\boldsymbol{\phi}$ is to be submitted via gradescope by $11: 59 \mathrm{PM}$ on the day that you have your tutorial.

## Problem 1 [1]

Prove that for binary relations $\mathcal{R}, \mathcal{R}^{\prime}$ from $A$ to $B$ and $\mathcal{S}, \mathcal{S}^{\prime}$ from $B$ to $C$, if $\mathcal{R} \subseteq \mathcal{R}^{\prime}$ and $\mathcal{S} \subseteq \mathcal{S}^{\prime}$ then $\mathcal{R} \circ \mathcal{S} \subseteq \mathcal{R}^{\prime} \circ \mathcal{S}^{\prime}$.

## Problem 2 [1]

Given $\mathcal{R} \subseteq A \times B$ and $\mathcal{S}, \mathcal{T} \subseteq B \times C$, prove or find an example that disproves

1. $\mathcal{R} \circ(\mathcal{S} \cup \mathcal{T})=(\mathcal{R} \circ \mathcal{S}) \cup(\mathcal{R} \circ \mathcal{T})$
2. $\mathcal{R} \circ(\mathcal{S} \cap \mathcal{T})=(\mathcal{R} \circ \mathcal{S}) \cap(\mathcal{R} \circ \mathcal{T})$
3. $\mathcal{R} \circ(\mathcal{S} \backslash \mathcal{T})=(\mathcal{R} \circ \mathcal{S}) \backslash(\mathcal{R} \circ \mathcal{T})$

## Problem 3 [1]

Show that a relation $\mathcal{R}$ on a set $A$ is

1. antisymmetric if and only if $\mathcal{R} \cap \mathcal{R}^{-1} \subseteq \mathcal{I}_{A}$.
2. transitive if and only $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{R}$.
3. connected if and only if $(A \times A) \backslash \mathcal{I}_{A} \subseteq \mathcal{R} \cup \mathcal{R}^{-1}$.

## Problem 4 [1]

Given a relation $\mathcal{R}$ on a set $A$, we define a sequence of relations as follows: we say $\mathcal{R}_{0}=\mathcal{I}_{A}$ and $\mathcal{R}_{i+1}=\mathcal{R}_{i} \circ \mathcal{R}$. Based on this we define the reflexive transitive closure of $\mathcal{R}$ as

$$
\mathcal{R}^{*}=\bigcup_{i \geq 0} \mathcal{R}_{i} .
$$

1. Prove or disprove that $\mathcal{S}=\mathcal{R}^{*} \cup\left(\mathcal{R}^{*}\right)^{-1}$ and $\mathcal{T}=\left(\mathcal{R} \cup \mathcal{R}^{-1}\right)^{*}$ are both equivalence relations.
2. Prove or disprove $\mathcal{S}=\mathcal{T}$.

## Problem 5 [1]

Consider any preorder $\mathcal{R}$ on $A$. For each $a \in A$ let $[a]_{\mathcal{R}}=\{b \in A: a \mathcal{R} b \wedge b \mathcal{R} a\}$. Now let $B=\left\{[a]_{\mathcal{R}}\right.$ : $a \in A\}$. Define a relation $\mathcal{S} \subseteq B \times B$ as follows: $[a]_{\mathcal{R}} \mathcal{S}[b]_{\mathcal{R}}$ whenever $a \mathcal{R} b$. Show that $\mathcal{S}$ is a partial order.

## Problem 6

Suppose we have a set $S$ and a partially ordered set $\left(T, \preceq_{T}\right)$, let $\mathcal{F}$ be the set of functions $f: S \rightarrow T$, i.e., all the functions from $S$ to $T$. We define a relation, $\preceq$, on $\mathcal{F}$ as follows: $f \preceq g$ if $f(x) \preceq_{T} g(x)$ for all $x \in S$. Show that $\preceq$ is a partial order on $\mathcal{F}$.

## Problem 7

Let $\left(S, \preceq_{S}\right)$ and $\left(T, \preceq_{T}\right)$ be two posets defined on disjoint sets $S, T$. The linear sum $S \oplus T$ of the two posets is $(S \cup T, \preceq)$ where for $x, y \in S \cup T$ we say $x \preceq y$ if either $x \preceq_{S} y$ or $x \preceq_{T} y$ or if $x \in S$ and $y \in T$. Show that $\preceq$ is a partial order on $S \cup T$. Draw an example of a graph for which a normal spanning tree's tree order can be represented as the linear sum of two tree orders.

## Problem 8

Two partially ordered sets $\left(S, \preceq_{S}\right)$ and $\left(T, \preceq_{T}\right)$ are said to be isomorphic if there exists a bijection $f: S \rightarrow T$ such that $x \preceq_{S} y$ if and only if $f(x) \preceq_{T} f(y)$ for all $x, y \in S$. The function $f$ is called an isomorphism. Also a function $f: S \rightarrow T$ is said to be increasing if $x \preceq_{S} y$ implies $f(x) \preceq_{T} f(y)$ for all $x, y \in S$. A function $f: S \rightarrow T$ is said to be strictly increasing iff for $x \neq y, x \preceq_{S} y$ implies $f(x) \preceq_{T} f(y)$ and $f(x) \neq f(y)$ (this could also be denoted $f(x) \prec_{T} f(y)$ ).

Show by example that an increasing function need not be an isomorphism.

## Problem 9

Suppose $\left(S, \preceq_{S}\right)$ and $\left(T, \preceq_{T}\right)$ are isomorphic and $f: S \rightarrow T$ is an isomorphism between them. Show that $f$ and $f^{-1}$ are both strictly increasing functions.

## References

[1] S. Arun-Kumar, Lecture notes for Introduction to Logic for Computer Science., IIT Delhi, 2002. http://www.cse.iitd.ernet.in/~sak/courses/ilcs/logic.pdf

