COL202: Discrete Mathematical Structures. I semester, 2020-21.
Amitabha Bagchi
Tutorial Sheet 5: Trees.
29 October 2020
Important: The question marked with a $\boldsymbol{\phi}$ is to be submitted via gradescope by $11: 59 \mathrm{PM}$ on the day that you have your tutorial.

Problem 1 [1, Prob 20, page 31]

Show that every tree T has at least $\Delta(T)$ leaves.

Problem 2

Prove that if an acyclic graph has $n-k$ edges, it has k components.

Problem 3 [1, Prob 22, page 31]

Let F and F^{\prime} be forests on the same vertex set with $|E(F)|<\left|E\left(F^{\prime}\right)\right|$. Show that F^{\prime} has an edge e such that $F+e$ is also a forest.

Problem 4 [1, Corollary 1.5.4, page 15]

Prove that if T is a tree and G is any graph with $\delta(G) \geq|T|-1$ then $T \subseteq G$, i.e., G has a subgraph isomorphic to T. Expand the proof idea given in the book into a proof.

Problem 5 [1, Prob 21, page 31]

Show that every tree without a vertex of degree 2 has more leaves than inner vertices. Show this by induction and then try to show it without induction.

Problem 6

Given two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ we define their product graph $G_{1} \times G_{2}=(V, E)$ as follows: $V=V_{1} \times V_{2}$ and $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in E$ if $\left(x_{1}, x_{2}\right) \in E_{1}$ or $\left(y_{1}, y_{2}\right) \in E_{2}$. Prove or disprove the following statements:

1. The product of two regular graphs is regular. Recall a graph is called regular if all vertices have the same degree.
2. The product of two trees is a tree.
3. The product of two bipartite graphs is a bipartite graph. ${ }^{1}$

Problem 7 内 [1, Prob 25, page 31]

Prove by induction that every connected graph contains a normal spanning tree.

Problem 8 [1, Prob 28, page 31]

Show that every automorphism of a tree fixes a vertex or an edge, i.e., for any one-to-one and onto function $f: V(T) \rightarrow V(T)$ that preserves the edge relationship for a tree T, either $f(v)=v$ for some $v \in V$ or there is an edge $(u, v) \in E(T)$ such that $f(u)=v$ and $f(v)=u$.

References

[1] Reinhard Diestel, Graph Theory 5ed., Springer, 2016.

[^0]
[^0]: ${ }^{1}$ A graph $G=(V, E)$ is called bipartite if there is a set $U \subseteq V$ such that for every $(u, v) \in E, u \in U$ and $v \in V \backslash U$.

