COL202: Discrete Mathematical Structures. I semester, 2020-21. Amitabha Bagchi
Tutorial Sheet 4: Graph connectivity.
23 October 2020
Important: The question marked with a $\boldsymbol{\uparrow}$ is to be submitted via gradescope by $11: 59 \mathrm{PM}$ on the day that you have your tutorial.

Problem 1 [1, Prob 12, page 30]

Show that every 2-connected graph contains a cycle.

Problem 2

Show using only the material covered in [1, Ch 1.4] that every connected graph on n vertices has at least $n-1$ edges.

Problem 3

Generalize the result of Problem 2 to show that every graph on n vertices and m edges has at least $n-m$ components.

Problem 4

Given a graph $G=(V, E)$ and a minimal cut $F \subseteq E$, show that any cycle of G contains an even number of edges of F (this number could be 0 as well).

Problem 5

Show that if there is a vertex v of odd degree in graph G there must be a path from v to another vertex u of G which also has odd degree.

Problem 6

Let \bar{G} be the complement of the graph G, i.e., all edges of G are non-edges of \bar{G} and vice versa. Show that both G and \bar{G} cannot be disconnected, i.e., at least one of them must be connected.

Problem 7

Given a graph $G=(V, E)$ such that $|V|=n$, a cut $F \subset E$ is called a balanced cut if $G \backslash F$ has exactly 2 components and each of these components has size at least $n / 3$. Construct graphs on n vertices whose smallest balanced cut has size (a) $\theta(1)$, (b) $\theta(\sqrt{n})$ and (c) $\theta(n)$.

Problem 8 (Menger's Theorem)

Prove that a graph G has $\lambda(G)=k$ for any $k \geq 1$ iff there are k edge-disjoint paths between any pair of vertices in G. Two paths are said to be independent if they don't share any edges. Caution: One direction of this theorem is easy and the other is tricky.

References

[1] Reinhard Diestel, Graph Theory 5ed., Springer, 2016.

