Important: The question marked with a ♠ is to be submitted via gradescope by 11:59PM on the day that you have your tutorial.

Problem 1 [1, Prob 12, page 30]
Show that every 2-connected graph contains a cycle.

Problem 2
Show using only the material covered in [1, Ch 1.4] that every connected graph on \(n \) vertices has at least \(n - 1 \) edges.

Problem 3
Generalize the result of Problem 2 to show that every graph on \(n \) vertices and \(m \) edges has at least \(n - m \) components.

Problem 4 ♠
Given a graph \(G = (V, E) \) and a minimal cut \(F \subseteq E \), show that any cycle of \(G \) contains an even number of edges of \(F \) (this number could be 0 as well).

Problem 5
Show that if there is a vertex \(v \) of odd degree in graph \(G \) there must be a path from \(v \) to another vertex \(u \) of \(G \) which also has odd degree.

Problem 6
Let \(\bar{G} \) be the complement of the graph \(G \), i.e., all edges of \(G \) are non-edges of \(\bar{G} \) and vice versa. Show that both \(G \) and \(\bar{G} \) cannot be disconnected, i.e., at least one of them must be connected.

Problem 7
Given a graph \(G = (V, E) \) such that \(|V| = n \), a cut \(F \subseteq E \) is called a balanced cut if \(G \setminus F \) has exactly 2 components and each of these components has size at least \(n/3 \). Construct graphs on \(n \) vertices whose smallest balanced cut has size (a) \(\theta(1) \), (b) \(\theta(\sqrt{n}) \) and (c) \(\theta(n) \).

Problem 8 (Menger’s Theorem)
Prove that a graph \(G \) has \(\lambda(G) = k \) for any \(k \geq 1 \) iff there are \(k \) edge-disjoint paths between any pair of vertices in \(G \). Two paths are said to be independent if they don’t share any edges. Caution: One direction of this theorem is easy and the other is tricky.

References