
COL202: Discrete Mathematical Structures. I semester, 2020-21.
Amitabha Bagchi
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Important: The question marked with a ♠ is to be submitted via gradescope by 11:59PM on the
day that you have your tutorial.

Note: Please read all of Chapter 3 of [1] (even the parts not discussed in class) before attempting this
sheet. All questions in this sheet are from that book, question numbers and page indicated in brackets
refer to the pdf linked on the course page.

Problem 1 (Prob 1, pp 94)
Give truth tables for the following compound propositions

1. (s ∨ t) ∧ (¬s ∨ t) ∧ (s ∨ ¬t)

2. (s⇒ t) ∧ (t⇒ u)

3. (s ∨ t ∨ u) ∧ (s ∨ ¬t ∨ u)

Problem 2 (Prob 8, pp 94)
Use a truth table to show that (s ∨ t) ∧ (u ∨ v) is equivalent to (s ∧ u) ∨ (s ∧ v) ∨ (t ∧ u) ∨ (t ∧ v) .

Problem 3 (Prob 8, pp 107)
Write the following statement as a logical expression: The product of odd integers is odd. You may
assume that odd : Z→ {T, F} is a predicate that maps odd integers to T and even integers to F .

Problem 4 (Prob 4, pp 106)
The definition of a prime number is that it is an integer greater than 1 whose only positive integer
factors are itself and 1. Find two ways to write this definition so that all quantifiers are explicit. (It
may be convenient to introduce a variable to stand for the number and perhaps a variable or some
variables for its factors.)

Problem 5 (Theorem 3.2, pp 100)
Here is the statement of a theorem given in [1] written in slightly different terms.

Theorem 1
Suppose we have a domain D and two predicates P,Q : D → {T, F}. Let A = {x ∈ D : Q(x) is T}.
Show that

1. ∀x ∈ A : P (x) is logically equivalent to ∀x ∈ D : Q(x)⇒ P (x).

2. ∃x ∈ A : P (x) is logically equivalent to ∃x ∈ D : Q(x) ∧ P (x).

Write a proof for this. You may read the proof in the book and then write it in your own words.

Problem 6 (Prob 6, pp 106)
Using s(x, y, z) to be the statement x = yz and t(x, y) to be the statement x < y, write a formal
statement for the definition of the greatest common divisor of two numbers.

Problem 7 (Prob 10, pp 107)
Rewrite the following statement without any negations. It is not the case that there exists an integer
n such that n > 0 and for all integers m > n, for every polynomial equation p(x) = 0 of degree m there
are no real numbers for solutions.
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Problem 8 ♠ (Prob 11, pp 107)
Consider the following slight modification of Theorem 3.2. For each part below, either prove that it
is true or give a counterexample. Let U1 be a universal set contained in another universal set U2, i.e.,
U1 ⊆ U2. Suppose that q(x) is a statement such that U1 = {x ∈ U2 | q(x) is true}.

1. ∀x ∈ U1 : p(x) is equivalent to ∀x ∈ U2 : q(x) ∧ p(x).

2. ∃x ∈ U1 : p(x) is equivalent to ∃x ∈ U2 : q(x)⇒ p(x).

Problem 9 (Prob 13, pp 107)
Each expression below represents a statement about the integers. Using p(x) for “x is prime,” q(x, y)
for “x = y2,” r(x, y) for “x ≤ y,” s(x, y, z) for “z = xy,” and t(x, y) for “x = y,” determine which
expressions represent true statements and which represent false statements.

1. ∀x ∈ Z : ∃y ∈ Z : q(x, y) ∨ p(x).

2. ∀x ∈ Z : ∀y ∈ Z : s(x, x, y)⇔ q(x, y).

3. ∀y ∈ Z : ∃x ∈ Z : q(y, x).

4. ∃z ∈ Z : ∃x ∈ Z : ∃y ∈ Z : p(x) ∧ p(y) ∧ ¬t(x, y).

References

[1] K. Bogart, S. Drysdale, C. Stein Discrete Math for Computer Science Students. 2005.

2


