Problem 1 [1, Prob 2, page 30]
Let \(d \in \mathbb{N} \) and \(V = \{0,1\}^d \), i.e., \(V \) is the set of all 0-1 sequences of length \(d \). We define the edge set as follows: there is an edge between two sequences if they differ in exactly one position. This graph is known as the \(d \)-dimensional cube. Determine the average degree, diameter, girth and circumference of the \(d \)-dimensional cube. Note that the circumference of a graph is the length of the longest cycle in the graph.

Problem 2 [1, Prob 3, page 30]
Let \(G \) be a graph containing a cycle \(C \), and assume that \(G \) contains a path of length at least \(k \) between two vertices of \(C \). Show that \(G \) contains a cycle of length at least \(\sqrt{k} \).

Problem 3 [1, Prob 6, page 30]
Show that \(\text{rad}(G) \leq \text{diam}(G) \leq 2\text{rad}(G) \) for every graph \(G \).

Problem 4 [1, Prob 7, page 30]
For \(d \in \mathbb{R} \) and \(g \in \mathbb{N} \), define
\[
n_0(d,g) = 1 + d \sum_{i=0}^{r-1} (d-1)^i,
\]
if \(g = 2r + 1 \) is odd and
\[
n_0(d,g) = 2 \sum_{i=0}^{r-1} (d-1)^i,
\]
if \(g = 2r \) is even. Show that a graph with minimum degree \(\delta \) and girth \(g \) has at least \(n_0(\delta/2, g) \) vertices. You can assume \(\delta \geq 2 \).

Problem 5 [1, Prob 12, page 30]
Show that every 2-connected graph contains a cycle.

Problem 6
Show that if there is a vertex \(v \) of odd degree in graph \(G \) there must be a path from \(v \) to another vertex \(u \) of \(G \) which also has odd degree.

Problem 7
Let \(G \) be the complement of the graph \(\bar{G} \), i.e., all edges of \(G \) are non-edges of \(\bar{G} \) and vice versa. Show that both \(G \) and \(\bar{G} \) cannot be disconnected, i.e., at least one of them must be connected.

References