Some properties of binary trees

Defn: A proper binary tree is one in which each node has either 0 or 2 children.

Thm: If T is a (proper) binary tree of height h and with n nodes

1) $h+1 \leq \text{# ext nodes} \leq 2^h - 1$
2) $h \leq \text{# int nodes} \leq 2^{h-1}$
3) $2^{h-1} \leq \text{# nodes} \leq 2^{h-1} + 1$
4) $\log(n+1) - 1 \leq h \leq \log(n)/2$
Proof 9(i) by induction

14. A tree of ht ≥ h−1 has ≥ k int nodes

15. Consider a tree of ht ≥ h

By 14. K has ≥ h−1 int nodes

So T has int nodes

= 1 + #ht(L) + #ht(R)
Lower bound tree

Upper bound
Prop: In a proper binary tree T, $\# \text{ext} = \# \text{int} + 1$.

If:

$\# \text{ext}(L) = \# \text{int}(L) + 1$

$\# \text{ext}(R) = \# \text{int}(R) + 1$

$\# \text{ext}(T) = \# \text{ext}(L) + \# \text{ext}(R)$

$= \# \text{int}(L) + \# \text{int}(R) + 2$

$\# \text{int}(T) = \# \text{int}(L) + \# \text{int}(R) + 1$

Euler Traversal.
30.08.2018

Given a set \(X \), a relation \(R \) is a subset of \(X \times X \).
- A relation \(R \) is called
 i) reflexive if \((x,x) \in R \) \(\forall x \in X \)
 ii) antisymmetric if \((x,y) \in R \text{ and } (y,x) \in R \Rightarrow x = y \)
 iii) transitive if \((x,y) \in R \text{ and } (y,z) \in R \Rightarrow (x,z) \in R \)
- A relation \(R \) is called a partial order if it has
 i) \(R \)
 ii) \(R \)
 iii) \(R \)
- A partial order \(R \) is called a total order if it has
 i) \((x,y) \in R \text{ or } (y,x) \in R \)
 ii) \(\forall x \in X \)
Priority Queue

\[N = A \times T \]

\[\text{where } T \text{ is a totally ordered set.} \]

A is the ground set of some ADT.

\[(a, k) \]

\[a \text{ data, } k \text{ priority or key.} \]

\[\text{A set } T \text{ in } \]
\[\text{called a T.O.} \]
\[\text{Set of } \leq \text{ relation} \]
\[\text{is called a} \]
\[\text{total order on } T. \]
Operations:

1. Insert \((a, k) \)

2. Remove Min \((P) = \text{remove} (a_i, k_i) \)
 where \(i = \arg \min_k k_j \)

3. Insert Min \((P) \)

\[\begin{align*}
\frac{1}{2} \bigcup \{0, 0.5, 1\}, \{0, 0.3, 0.1\} \\
\end{align*}\]
Sort using a PQ

Given a set \(H \) of numbers

* - Insert all \(|H| \) numbers in PQ as \((i,i)\)

* - Remove Min \(|H| \) times.

1) Insert \(O(|i|) \)

Remove \(O(|i|) \)

InPlace SelectionSort

Insert: \(\sum i \)

Remove: \(\frac{|H| \cdot (|H| + 1)}{2} \)

\(\Theta (|H|^2) \)

\(\Theta (|H|^2) \)
Heap order property:

Nodes: Key at node ≤ keys at all children

Remove min:
- Return root and
 empty the root
- Move min of children to root
 and recursively fix the subtree whose
 root now empty.

Time ≤ \(h \times \log_2(\frac{n}{h}) \)
Inert

- Attach new key at leaf.
- If new key > parent key oth

swap with parent and

Time $O(\log n)$

Heap structure propery
Remove min
- remove last node on lowest level
- put it in the empty root
- bubble down
- WLT the key violates the
 10 property swap with
 min of children

\[\text{Time} = O(\text{ht}(T) \cdot \#\text{child}(T)) \]

\[\text{ht}(T) = \lceil \log \left(\frac{\#\text{nodes}(T)}{2} + 1 \right) \rceil - 1 \]

\[= \Theta(\log m) \quad m = \#\text{nodes}(T) \]
\[L_{\text{child}}(i) = 2i + 1 \]
\[L_{\text{child}}(i) = 2i + 2 \]

\[\sum_{i=0}^{d-1} 2^i = 2^d - 1 + kH! \]

\[= 2^d - 1 + kH! \]

\[= 2^d - 1 + k - 1 \]
Heapsort
- Successively insert n items
- Successively delete n items

\[\sum_{i=1}^{n} (\log i + 1) \geq \sum_{i=n/2}^{n} \log i \]

\[
\geq \frac{n}{2} \log \frac{n}{2}
\]
\[c \sum_{k=1}^{h} 2^{h-h'} \leq 2^h \sum_{k=1}^{h} 2^{h-h'} \leq 2^h \leq 2^{h+1} = \Theta(n) \]
04. 09. 2018

Post minor rework

1. How do computer scientists compare \(f, g : \mathbb{N} \to \mathbb{R}^+ \)?

A. Three Options

i) \(f(n) \in \Theta(g(n)) \) — same (why?)

ii) \(f(n) \in o(g(n)) \) — \(f(n) \) is slower/faster than \(g(n) \) (why?)

iii) \(g(n) \in o(f(n)) \) — Conceptually the same.
2. \(T' = \text{parent}(\text{root}(T)) \)

\[
\text{int Tree} := \text{int Tree Node} \mid \text{Empty Tree}
\]

\[
\text{int Linked List} := \text{int Node} \mid \text{Empty List}
\]
Dictionary ADT: A - Dictionary set isNotAdj

Operations: Given \(x \in X \), \(D \in X \cdot A \cdot \text{dictionary} \)
- Insert \((x, D) \)
- Delete \((x, D) \)
- Find \((x, D) \)

\(X \cdot A \leftarrow \text{unordered} \) \[\text{isEqual} \quad \text{exists} \]
\(X \cdot A \leftarrow \text{ordered} \) \[\leq \quad \text{contains} \]
\(\text{and in a Total order} \)
Implementation 1: Log files

Each \(i \in A \) has a key \(k \) and data \(d \) associated with it. The \(k \) comes from an ADT that has isEq \(= \) defined.

\[(k_1, d_1), (k_2, d_2), \ldots, (k_n, d_n)\]
Implementation 2: Hash maps.

Dictionary: BucketArray

Storage: "Bucket" array

\[f: \mathbb{N} \rightarrow \{0, \ldots, n-1\} \]

Given \(a \in \mathbb{N} \):

- \(f(a) \) is the index of the bucket used to store \(a \)

Insert \((a, D) = \)

\[\text{Bucket} - \text{Insert}(C[f(a)], x) \]

If Bucket is implemented with lists, then A-list insert \((C[f(a)], x)\)
\textbf{Find} \ (x, D) : A \text{-} \text{List} \ - \ A \text{-} \text{Member} \ (C \left(f(x)\right), x)

\text{Ex} \quad X_A = \text{named in Roman script} \\
\begin{array}{c}
\begin{array}{c}
\text{0} \\
\text{C} \\
\text{25}
\end{array}
\end{array}

f(x) = \text{letter position A first letter of x.}

f(\text{"ANKIT"}) = 0 \quad f(\text{"ROHIT"}) = 18

\text{insert (D, "ANKIT")}
\text{insert (D, "ROHIT")}
\text{insert (D, "ANKIT")}

\text{insert (D, "ROHIT")}
hash function

Computing a hash code \(h : X \rightarrow S \) takes at least \(\log S \) bit operations (why?)
Hash codes:

- Casting to an integer: \((a^x) \mod n\) where \(a\) is of some type A.

- Summing components: \(a = (a_1, a_2, \ldots, a_n)\)
 \[h(a) = \sum a_i \]

- Polynomial: \(a = (a_1, a_2)\)
 \[h(a) = \sum a_i a^i \]

Compression maps:

- \(h(a) \mod n\)
- \((a \cdot h(a) + b) \mod n\)
If \(x, y \) have the property that \(f(x) = f(y) \) we say that a "collision" has occurred.

Collision handling

1. Checking: If \(f(x) = f(y) \)

2. Load factor: Then we make

3. Given set size = \(M \) a linked list/cast

Array size = \(n \) /hash map

\(\lfloor \frac{M}{n} \rfloor \) \(\text{the load factor} \) and store \(x \rightarrow C[i] \).
Load factor is a lower bound on worst case query time for all dictionary operations.

Open addressing

1. Linear probing

\[a : f(a) = 2 \]
\[b : f(b) = 4 \]
\[j = f(j) = 2 \]
\[z = f(z) = 2 \]
\[w = f(w) = 2 \]
\[x = f(x) = 3 \]

Find \(x \):

- Go to \(f(w) \) and move
- Till you find \(x \) or empty

No

Yes

[Diagram: A table with entries 0, 2, 3, and 7, with arrows indicating the probing sequence.]
1. Insertion: Go to \(C(f(n)) \) and insert if it is empty or less than \(x \), else go right till you find empty / \(x \) or return to \(f(n) \) (Exception)

2. Delete \(x \): Find \(x \) and replace with * if found.

Variation (A Quadratic probing)

\[f(n) = 0, f(n) + 1, f(n) + 2 \ldots \]

(b) Double hashing

PS (ii.9)

In case the load factor gets very high, we may need to reduce (more uniformly)
Ordered dictionaries

1. Look-up table
 - Maintain keys in sorted order: \(k \), \(k \), \(k \), \(k \)...

 Binary search: Find \((k, x)\) in \(A[\log_2 n] \) and \(A[2 \log_2 n] \)
 - \(O(\log_2 n) \)
 - \(O(\log_2 n) \)

 \[n, \frac{n}{2}, \frac{n}{4}, \ldots, \frac{n}{2^i} \leq 1 \]

 For any search target: \((k, x)\) \(\log_2 n = \frac{k \cdot 2^i}{\log_2 n} \)
\[
\frac{\log_2 n}{\log_2 k} \leq \frac{\log_2 n}{\log_2 k} - 1
\]

\[
\frac{\log k}{\log 2}
\]

Find (8, A)

\rightarrow \text{Not Found (7, 12)}

\begin{align*}
\text{a}^- &= \text{greatest key on which } i \leq \text{a}^- \in A \\
\text{a}^+ &= \text{least key } x \text{ which is } x \in A
\end{align*}

\text{P.S.: Maintaining the sorted array is } \Theta(n) \text{ in order to insert and delete.}
Can we do binary search with linked lists (or some modification of linked lists) so that insert/delete becomes easier?

\[\text{Find}(D, 4), \text{Find}(D, 10) \]
14.09.2018

How to insert in a skip-list.

Insert (s, x).

1. Decide $\text{ht}(x) > 0$.
2. Insert x with height $\text{ht}(x)$.

Where $\text{ht}(x) = \max \{ k : x \in E_k \}$.
Insert as follows:
- Find \((s, a)\) "with a stack"
- \(i = 0\)
- Until Stack empty and \(i \leq \text{ht}(n)\)
 - Pop (Stack) and get \((k, x_k, x_{k+1})\)
 - Insert \(a\) between \(x_k, x_{k+1}\)
 in \(L_k\)
 - \(i++\)
- While \(i \leq \text{ht}(n)\)
 - Make a new list \(L_i\) and insert \(a\) in it
 - \(i++\)
How to choose \(h_t(x) \): Randomly.

Pick \(p \in (0,1) \)
- \(x \) is in \(l_0 \) with probability 1
- For all \(i > 0 \)
 - if \(x \notin l_i \), then put \(x \) in \(l_i \) w/prob \(p \).

Height analysis: Given \(n \) elements \(a_1, \ldots, a_n \)

\[
P \left(\bigcup_{i=1}^{n} h_t(a_i) \geq k \right) = p^k \sum_{k=2^{\log p}}^{n} \binom{n}{k} \leq \frac{n^k}{k!} \leq \frac{e^k}{k!}
\]

Given event \(A \cup B \)
\[
P(A \cup B) = P(A) + P(B) - P(A \cap B)
\]

\[
k = 2 \log n \approx \log_{10} n + o(n)
\]
Distance travelled backwards before encountering first key promoted to level 1:

\[k \sim \text{Geometric}(p) \]

\[E[\text{# of items seen in list } 0] = \frac{1}{p} \]

\[E[\text{# of items seen in list } i] = \frac{1}{p^i} \]
X: No. of items in level i met before first at $m/2$ level ≥ 1

$P[X = k] = (1-p)^{k-1}p$

$E[X] = \sum_{k=1}^{\infty} k (1-p)^{k-1} = 1 \cdot \frac{1}{\frac{1}{1-(1-p)^2}} = \frac{1}{p}$

Time taken to find in expectation = $\frac{1}{b} \log(s)$

$= \Theta\left(\frac{1}{b} \log(1/p)\right)$
Binary Search Trees (BST)

A BinTree where
A is a totally ordered datatype with comparison operator \leq.

Def: An A-BinTree t at every node q, the key v in
the subtree of q are \leq the key at q and the keys in
the \geq subtree of q are $> v$.
Find α(19)

- If $\alpha = \text{Empty}$ say No
 - If $\alpha = \text{key(root(T) = } \alpha$
 say Yes
 - Else if $\alpha < \text{key(root(T) = }$
 find(α, \text{left-sub(T(root(T))})
 Else
 find(α, \text{right-sub(T(root(T))})
Find (31)

30^+ = 32
30^- = 30

Define: in order successor
in order predecessor
of each node
Case 1: Delete leaf

Case 2: Delete node with 1 child
 (attach subtree to parent of deleted node)

Case 3: Pop up inorder predecessor and then delete it's node (Case 1 or 2)
AVL Trees (Adelson-Velckii, Landis, 1957)

\[|h_l - h_r| \leq 1 \]

A binary search tree is called an AVL tree if it is a BST and the difference in heights of subtrees is at most one at every node.

"structural invariant"

Find operation:
- Exactly like BST
- (no structural invariant is broken so nothing extra to do)
Height analysis:

\[n(h) : \text{no of nodes in AVL tree of height } h \]

Convention:

- \(h = \min \)

\[\bar{n}(h) = \text{max no of nodes of AVL tree of height } h \]

\[n(h) = \min \]

\[\bar{n}(h) = \max \]

\[n(0) = 1 \]

Claim: \(\bar{n}(h) \) increases with \(h \).

Proof: True since \(\bar{n}(h) = 2^{h+1} - 1 \)

- \(n(0) = 2 \)
- \(n(1) = 3 \)
- \(n(2) = 7 \)
- \(n(3) = 15 \)

Claim: \(n(h) \) increases with \(h \)
Claim: $n(h)$ increases with h.

Proof:
- Consider a tree of height h that has $n(h)$ nodes.
- Remove all nodes of depth h.
- The resulting tree is an AVL tree of height $h-1$.

- The number of nodes:
 $n(h) = n(h-1) + 2n(h-2) + 1$

- By induction, $n(h) = n(h-1) + 2n(h-2) + 1$.

Thus, $n(h) > n(h-1)$.
Claim: \(n(h) = 1 + 2n(h-1) \geq n(h-2) \)

LH: Follows since \(n(h) \) increases with \(h \)

Soln 1: Claim 3 \(\Rightarrow \) \(n(h) \geq 1 + 2n(h-2) \)

\[
\text{RHS} = \sum_{i=0}^{\sqrt{2/h}} 2^i \geq 1 + 2 \left(1 + 2n(h-1) \right)
\]

\[
\Rightarrow n(h) \geq 2^\sqrt{2/h} - 1 \quad \text{and} \quad 2^\sqrt{2/h} \leq n(h)
\]

\[
\Rightarrow 2^{\frac{h+1}{2}} \leq \log_2 (n(h) + 1) \leq \log_2 n(h)
\]

\[
\Rightarrow h \leq \left(\log_2 (n(h) + 1) - 1 \right) = O(\log_2 n(h))
\]
Given an \(m \): let \(h(n) \) be the set of heights of AVL trees on \(n \) nodes. \(h(n) = \{ h_1, h_2, \ldots, h_k \} \).

\(h_i \in O(\log^2 n) \)

Function:
- Start with simple BST insertion.
- Move up (using parent pointer) updating height as required, stopping either when height doesn't change or when AVL property is violated.
Stage 1: BST insertion
Stage 2: Moving up from inserted node update
- Height check for balance property violation,
- Stop if no further height update poss. violation found

Stage 3: If stop in stage 2 happened
with no invariant violation => Quit.
Since it cannot be \(h-3 \), since violation would be shown at \(C \) before \(A \).

Since it cannot be \(h-1 \), increment.
Restructuring procedure (trinode restructuring)

1. Identify 3 nodes
 - \(z \): 1st node at which imbalance is observed
 - \(y \): higher child of \(z \) in terms of subtree height
 - \(\alpha \): higher child of \(y \) in terms of subtree height

\[\text{If } \alpha \leq y \text{, make } \alpha \text{ the root} \]
\[\text{If } \alpha > y \text{, make } y \text{ the root} \]