AVL Deletion (key by node)
- Delete node as per BST deletion
- Moving upwards from point of deletion, update height as required and find first point of imbalance if any.
- Use trimode restructuring to rebalance an unbalanced node
Multiway search trees

Def: A multiway search tree is one with full property

- Each node has at least 2 children

- Each node contains a collection \(k_1, \ldots, k_s \) of keys

- A node with \(s \) keys has \(s + 1 \) subtrees associated with it.

- All keys in subtree \(i \) are at:

 \[k_i \leq x < k_{i+1} \]

 where \(k_0 = -\infty \) and \(k_{s+1} = +\infty \)

Find 33
Find in multiway search tree

Root is \(k_1, \ldots, k_i \), find \(x \)

\[
\text{Find}(x, \text{Dict}(k_1, \ldots, k_i))
\]

\(\checkmark \) Yes

\(\nabla \) No \((x \not\in k_i) \rightarrow k_i, k_{i+1} \)

Recursively continue search in subtree lying to the left of \(k_i \), and

\(k_{i+1} \) in subtree \(i+1 \).
Multinary search trees restart

Def: We call a (general) tree node a d-node if it has d children.

Def: A multinary search tree node is a d-node ($d \geq 2$) that contains $d-1$ keys $k_1 \leq k_2 \leq \ldots \leq k_d$.

Def: A multinary search tree is a tree with the property that
- All leaves are d-nodes (k_1, \ldots, k_{d-1}).
- If an internal node v is a d-node then it has d subtrees $T_{v,1}, \ldots, T_{v,d}$ s.t.:

\[
\min \text{ key}(T_{v,1}) \leq k_1 < \min \text{ key}(T_{v,2}) \leq \min \text{ key}(T_{v,3}) \leq k_2 \ldots
\]
Find in a multivary search tree \(x \)

- Start from root

- At an internal node \(v = (k_1, \ldots, k_{d-1}) \) run a Dictionary-Search \(\& \) on \(k_1, \ldots, k_{d-1} \).

 - If Dictionary-Search \(\& \) returns found then return with key

 \[
 \begin{align*}
 \text{else} & \quad \text{D-search returns } \ i \ \text{of } 1 \leq i \leq d \\
 \text{such that if } x \text{ exists it must lie in } T_v, i.
 \end{align*}
 \]

 Then continue with Search \((T_v, i, x) \).

D-Search returns \(x_-, x_+ \).

If \(x = x_+ \) then \(i = 1 \), if \(x = x_- \) then \(i = 2 \), else \(i \) in the index of \(x_+ \).
2-4 Trees

Definition: A 2-4 tree is a multiway search with keys restricted to 0, 2, 3, 8. Additionally, all leaves have the same depth.

Q: Given n keys what is the height h of a 2-4 tree.

If no of nodes at depth d = n_d

$2^{n_0} \leq n_{d+1} \leq 4n_d$

Total no of nodes = $\sum n_i$

$2^{n_0} \leq n_{d+1} \leq 4n_d$

$4^{h+1} - 1$ keys
\[\Rightarrow \quad \# \text{keys} \leq 4^{h+1} - 1 \]

and
\[\# \text{keys} \geq 2^{h+1} - 1 \]

\[\log_4(n+1) \leq h \leq \log_2(n+1) \]
Alg: Insert (x)
- Search (x)
 - to reach a leaf
 - Insert x in the parent of the leaf
 - If no overflow
 - stop
 - If overflow
 - promote 2nd or 3rd key to parent
 - and repeat from
 - If no parent
 - create new root.
2-A tree deletion

Alg:
- if key is not in
 lowest level replace
 it with appropriate
 key from lowest level ("move
 predecessor/successor")
and do leaf-level deletion
- leaf-level deletion
 - delete key if in underflow stop,
 else
Generalization:

- \((x, y)\) trees.

- S+ Trees (self-study)

Red-black trees \(\rightarrow\) Balanced BST.

Sorting:

\[D = \{ a, b, \ldots \} \]

\[S : D \rightarrow \{ x_1, \ldots, x_n \} \]

\[\text{if } i < j \Rightarrow x_i \in x_j \]
Sorting is the process of finding an order respecting permutation of the input sequence \(\Rightarrow \) \(1 \) (in the w.c.)

sequence has to be found out of \(m! \) \(\Rightarrow \) \(\Theta (m \log m) \)
time in the worst case.

Algorithms already seen
- Insertion sort \(\Rightarrow \Theta (m^2) \) time
- Selection sort \(\Rightarrow \Theta (m^2) \) time
- Heap sort \(\Rightarrow \Theta (m \log m) \) time
- There are n rounds
- In each round, start from A[0]
 and move through the array
 comparing A[i] to A[i+1] for i = 0 to n-2
 If they are in the wrong order, flip them.

Θ(n^2) \(\leq \) Time

Round i ensures i\text{th} largest reaches its correct position.
Merge sort
- If array size = 1 return array
- else
 - Divide array into 2 equal parts
 - Recursively merge sort each part
 - Merge the two sorted arrays.
Merge sort takes $\Theta(n \log n)$ time.

Quick sort

- Pick an element x (arbitrarily) from $A[\cdot]$.
- Create two arrays $B[\cdot]$ and $C[\cdot]$ so that $B[\cdot]$ contains elements $\leq x$ and $C[\cdot]$ contains elements $> x$.
- Recursively quicksort $B[\cdot]$ and $C[\cdot]$ and output as $B[\cdot] \cup C[\cdot]$.
\[T(n) = T(k_1) + T(k_2) \]

where \(k_1 + k_2 = n - 1 \)

\[T(n) = T(n-1) + n \]

\[T(1) = 1 \]

\[q_5(A) \quad q_5(A, 0, n-1) \quad q_5(A, 0, 8) \]

Pivoting

\[q_5(A, 0, 3) \quad q_5(A, 5, 8) \]
Pivoting in-place:

- \(A[0] \) is called the pivot

The process of recasting the array into two parts is called pivoting.

\[\text{\[\leq a \}\[> a\]} \]

- Proceed with front and rear pointers (initialize to 0 and \(n-1 \) resp.)

\[\begin{align*}
\text{hyp.:} & \quad A[0] \ldots A[f-1] \leq a \\
& \quad A[r+1] \ldots A[n-1] > a \\
\end{align*} \]

- Proceed to separate \(\{ y < a \} \cup \{ y > a \} \)

- At then end put \(A[0] \) at the last location of the left array (\(y < a \))
Running time

0

$k_0 \leq \frac{2}{3} k_0 \Rightarrow k_2 \geq \frac{2}{3} k_1$

If $\text{good} = \text{middle} \frac{1}{3}$

$k_i \leq M \left(\frac{2}{3} \right)^i$

$i = \log_{\frac{2}{3}} n$

\[\Rightarrow \left(\frac{2}{3} \right)^i = \frac{1}{n} \]
good parent - child #a relationship
 = child #a gets ≤ 2/3 of parents key.

good parent = (good #a relationship) & (good #b relationship)

bottomline: Since in the real world keys are often randomly distributed Q5 works well in practice b/c if they are randomly distr then
r. t. = Θ(n log n)
Quicksort 2.0?

- Instead of choosing A[i] as pivot, spend Θ(n) time to find the median of A[n].
- Rest remains the same.

Randomized Quick Select

Q: Given A[1] find kth smallest element. (Θ(k+nlogn))

- Pick A[0] = x.
- Pivot A[0] around x & say minimum A[j].
 - If j > k: recurse (A, 0, j, k)
 - If j < k: recurse (A, j, n-1, k-j)
Bucket Sort

Suppose we have n keys all belonging to \(\{0, \ldots, N-1\} \)

1. Go through \(A \) from 0 to \(n-1 \)
2. If \(A[i] = k \) then insert \(i \) in \(B[k] \)'s list.
3. Sort the lists in order \(B[0] \ldots B[N-1] \)

\[
\text{Running time} = \Theta(n+N)
\]
Radix sort:

Def: lexicographical ordering of “strings”

Suppose we have a totally ordered “alphabet” \(\{ a_1, a_2, \ldots, a_n \} \)

\(a = a_1 a_2 \ldots a_e \)

\(y = y_1 y_2 \ldots y_e \) are strings on our alphabet

We say that \(a \leq y \) if either \(a_i \leq y_i \) for all \(i \) or \(a_i = y_i \) for some \(i \) with \(a_i < y_i \)

\(\lambda = \text{empty string} \)

\(\lambda \preceq \text{non-empty string} \) and \(a_1 \ldots a_e \preceq y_1 \ldots y_e \)
Stable sorting

Given \((x_1, y_1), (x_2, y_2) \ldots (x_n, y_n)\)

Sort on first coordinate to get

\((x_1', y_1'), (x_2', y_2') \ldots (x_n', y_n')\)

Suppose \(x_i, x_{i+1} \ldots x_j = x_k\)

The sort is said to be stable if the pairs

\((x_k, y_i), (x_k, y_{i+1}) \ldots (x_k, y_j)\)

appear in the same order in the sorted as in the unsorted sequence.
\[(7, 19), (6, 2), (7, 3), (5, 17), (7, 1), (8, 26)\]

\[
(5, 17), (5, 2), (7, 3), (7, 1), (7, 1), (8, 26)
\]

\[
(6, 2), (7, 19), (7, 3)
\]
273, 078, 932, 017, 645, 368

Given a digit numbers with columns $d, d-1 \ldots 1$.
From $i = 1$ to d

stably sort the current array by the ith column

$O(dn)$
Correctness by induction

IH: After i rounds the numbers are sorted if we only look the i least significant digits.

1. Sort column i+1. Now group the numbers by the elements of the alphabet. If a block the wins are sorted by IH & stability. Across blocks by correctness of your bucket sort.
The Graph ADT

Defn: A graph is a tuple \((V, E)\) where \(V\) is a set of "something" and \(E\) is a "sub" set of \(V \times V\).

Twitter
- \(V\) - set of users
- \(E\) - set of (follower, followed)

Facebook
- \(V\) - set of users
- \(E\) - set of friend pairs

Academia
- \(V\) - set of authors & researchers
- \(E\) - \((u, v) \in E \iff u \& v \text{ published together}\)
A Graph ADT method (V in ADT A)

Vertex operations - adjacent edges () - A x A List
adjacent vertices () - A List

Edge operations + Dynamic Operations (insert/delete etc)
Data structures

\[d = \text{max deg}(u)\]

Adjacency list

Adjacency matrix
6.11.2018

Neo4J, Titan Graph DB

Edge list

Graph traversal

Vertex based data structure

AdjList/Matrix
Breadth First Search (BFS, \(n \times O \))

- \(0 \rightarrow \)
- \(1 \rightarrow \)
- \(2 \rightarrow \)

- Store newly discovered vertices in queue.
Learning time: