Algorithms for graph compression

Arindam Pal

Problem description

- Weighted directed graph $G=(V, E)$.
- Weight of edge e is w_{e}.
\square Nodes are numbered from 1 to n.
- Represented in the adjacency list format.
- Each element in the adjacency list requires $\log n$ bits to store.
- Goal: Minimize the number of bits needed to represent the graph.

Reference encoding

- Adjacency list of a node shares elements with the adjacency lists of other nodes.
- Shared nodes can be specified implicitly.
- Suppose x shares some neighbors with y.
\square Create a bit-vector for y of length $d(y)$.
- Set the bit to 1 for those nodes in $N(y)$ which are shared with $N(x)$.

Illustrative example

Node	Adjacency list
1	$2,7,13,25$
2	$3,4,5,7,13,20$
3	$2,3,5,20,25,31$
4	$2,3,5,7,31$
\ldots	\ldots

Example continued...

Node	Reference nodes	Shared lists	Exclusive list
1	0	EMPTY	$2,7,13,25$
2	1	0110	$3,4,5,20$
3	1,2	1001,101001	31
4	$1,2,3$	$1000,101100,000001$	EMPTY
\ldots	\ldots	\ldots	\ldots

Algorithm

$c(x, y)=d(y)+(|N(x)-N(y)|+1) \log n$.
$c(x)=d(x) \log n$.
\square Goal is to find an encoding of minimum cost.

- Construct another graph H having all nodes in G plus a new root node r.
- Cost of edge between x and y is $c(x, y)$.
\square Cost of edge between x and r is $c(x)$.
- Find a directed MST T in H.
\square Use the edges in T to encode x.

Approximate representation

- Construct a graph $G_{\epsilon}=\left(V, E_{\epsilon}\right)$ such that $\left|E_{\epsilon}\right|$ is minimized with the following property.

$$
d_{\epsilon}(v) \geq(1-\epsilon) d(v), \text { for all } v \in V
$$

\square Equivalent to finding a set of edges $E^{\prime \prime} \subseteq E$ in G with $\left|E^{\prime}\right|$ maximum such that in $G^{\prime}=\left(V, E^{\prime}\right)$,

$$
d^{\prime}(v) \leq \epsilon d(v), \text { for all } v \in V
$$

- Can be modeled as an integer program.
- Using randomized rounding and Chernoff bounds, optimum can be found with high probability.

Integer program

$$
\begin{aligned}
& \text { maximize } \sum_{e \in E} x_{e} \\
& \text { such that } \sum_{e \in \delta(v)} x_{e} \leq \epsilon d(v) \quad \forall v \in V \\
& x_{e} \in\{0,1\} \quad \forall e \in E
\end{aligned}
$$

Using multiple reference nodes

- Let $L(x)$ be the set of reference nodes used to cover the nodes in $N(x)$.

$$
\text { minimize } \sum_{x \in V} c(x)
$$

where $c(x)=\left(|L(x)|+\left|N(x) \backslash \bigcup_{v \in L(x)} N(v)\right|\right) \log n$

$$
+\sum_{v \in L(x)} d(v)
$$

Open questions

- How to choose an ordering in which the nodes should be listed?
- Given an ordering, for each node x what nodes should be included in $L(x)$?
- Given x and $L(x)$, how to cover the nodes in $N(x)$ so that $c(x)$ is minimized?
- Can be modeled as a directed MST problem in a hypergraph.

Bounding number of dereferencing

- Dereferencing a node may lead to cascading dereferencing of other nodes.
- We may set a bound on the number of nodes we have to dereference.
- Equivalent to computing the directed MST with a depth bound, which is NP-hard to approximate.
- Even for depth 2, the facility location problem can be reduced to this problem.
- For undirected graphs, there is a randomized algorithm that computes a spanning tree of depth at most k, whose expected cost is $O(\log n)$ times the cost of the MST of depth at most k.

Questions?

Thank you!

