Algorithms for graph compression

Arindam Pal IIT Delhi / Yahoo! Research

Problem description

- Weighted directed graph G = (V,E).
- Weight of edge e is w_e .
- **Nodes** are numbered from 1 to n.
- Represented in the adjacency list format.
- Each element in the adjacency list requires $\log n$ bits to store.
- Goal: Minimize the number of bits needed to represent the graph.

Reference encoding

- Adjacency list of a node shares elements with the adjacency lists of other nodes.
- Shared nodes can be specified implicitly.
- Suppose x shares some neighbors with y.
- Create a bit-vector for y of length d(y).
- Set the bit to 1 for those nodes in N(y) which are shared with N(x).

Illustrative example

Node	Adjacency list		
1	2, 7, 13, 25		
2	3,4,5,7,13,20		
3	2, 3, 5, 20, 25, 31		
4	2, 3, 5, 7, 31		

Example continued...

Node	Reference nodes	Shared lists	Exclusive list
1	0	EMPTY	2, 7, 13, 25
2	1	0110	3, 4, 5, 20
3	1, 2	1001, 101001	31
4	1, 2, 3	1000, 101100, 000001	EMPTY
	•••	•••	•••

Algorithm

- $c(x,y) = d(y) + (|N(x) N(y)| + 1)\log n.$
- $\bullet c(x) = d(x)\log n.$
- Goal is to find an encoding of minimum cost.
- Construct another graph H having all nodes in G plus a new root node r.
- Cost of edge between x and y is c(x,y).
- Cost of edge between x and r is c(x).
- Find a directed MST T in H.
- Use the edges in T to encode x.

Approximate representation

- Construct a graph $G_{\epsilon} = (V, E_{\epsilon})$ such that $|E_{\epsilon}|$ is minimized with the following property. $d_{\epsilon}(v) \ge (1 - \epsilon)d(v)$, for all $v \in V$
- Equivalent to finding a set of edges $E' \subseteq E$ in *G* with |E'| maximum such that in G' = (V, E'), $d'(v) \leq \epsilon d(v)$, for all $v \in V$
- Can be modeled as an integer program.
- Using randomized rounding and Chernoff bounds, optimum can be found with high probability.

Integer program

Using multiple reference nodes

Let L(x) be the set of reference nodes used to cover the nodes in N(x).

minimize
$$\sum_{x \in V} c(x),$$

where $c(x) = (|L(x)| + |N(x) \setminus \bigcup_{v \in L(x)} N(v)|) \log n$

$$+\sum_{v\in L(x)}d(v).$$

Open questions

- How to choose an ordering in which the nodes should be listed?
- Given an ordering, for each node x what nodes should be included in L(x)?
- Given x and L(x), how to cover the nodes in N(x) so that c(x) is minimized?
- Can be modeled as a directed MST problem in a hypergraph.

Bounding number of dereferencing

- Dereferencing a node may lead to cascading dereferencing of other nodes.
- We may set a bound on the number of nodes we have to dereference.
- Equivalent to computing the directed MST with a depth bound, which is NP-hard to approximate.
- Even for depth 2, the facility location problem can be reduced to this problem.
- For undirected graphs, there is a randomized algorithm that computes a spanning tree of depth at most k, whose expected cost is O(log n) times the cost of the MST of depth at most k.

Questions?

Thank you!