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Abstract—With the improvement in technology, both the cost
and the power requirement of cameras, as well as other sensors
have come down significantly. It has allowed these sensors to
be integrated into portable as well as wearable systems. Such
systems are usually operated in a hands-free and always-on
manner where they need to function continuously in a variety of
scenarios. In such situations, relying on a single sensor or a fixed
sensor combination can be detrimental to both performance as
well as energy requirements. Consider the case of an obstacle
detection task. Here using an RGB camera helps in recognizing
the obstacle type but takes much more energy than an ultrasonic
sensor. Infrared cameras can perform better than RGB camera at
night but consume twice the energy. Therefore, an efficient system
must use a combination of sensors, with an adaptive control that
ensures use of the sensors appropriate to the context. In this
adaptation one needs to consider both performance and energy
and their trade-off. In this paper, we explore the strengths of
different sensors as well their trade-off for developing a deep
neural network based wearable device. We choose a specific
case study in the context of a mobility assistance device for the
visually impaired. The device detects obstacles in the path of a
visually impaired person and is required to operate both at day
and night with minimal energy to increase the usage time on
a single charge. The device employs multiple sensors: ultrasonic
sensor, RGB Camera, and NIR Camera along with a deep neural
network accelerator for speeding up computation. We show that
by adaptively choosing the appropriate sensor for the context, we
can achieve up to 90% reduction in energy while maintaining
comparable performance to a single sensor system.

I. INTRODUCTION

The design of a portable real-time vision system which con-
tinuously monitors the surroundings is complex. Such a system
must achieve an acceptable level of performance while making
sure that the energy consumption is also within limits. Further,
due to their always-on nature, these systems go through a lot
more variations in the environment than a typical static system,
which makes it imperative to employ a variety of sensors to
perform efficiently under different conditions. Therefore, the
system designers must classify various contexts, and choose
the corresponding best performing and least power consuming
sensor in that context, to ensure that the performance levels
are met while also saving energy. Examples of such systems
include robotic systems working in collaboration with humans,
factory floor robots, assistive devices for visually impaired and
even battery operated autonomous vehicles.

Technological advances in last few decades have made
cameras inexpensive and ubiquitous. At a relatively low
power usage, cameras allow us to obtain a large amount
of information about the environment thus making a variety
of applications possible with vision-based systems. However,
extracting this information from the images is still a non-trivial
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Fig. 1: Common sensors for obstacle detection have different
energy consumption pattern along with the associated perfor-
mance in a certain setting. For example, as shown above, an
ultrasonic sensor system is extremely low power, a visible
spectrum camera has an intermediate power consumption
while an IR camera with active illumination is the most energy
consuming. An ideal system should have an effective policy
for actual usage of each sensor, to achieve high performance
with energy efficiency.

task for computer algorithms. With the advent of deep learning
techniques for image classification, object detection etc., some
of these inference tasks that were previously considered ex-
tremely difficult are now beginning to be realized. However,
the computational demand of these tasks is still very high.
State-of-the-art object detection techniques use neural network
architectures parameterized by a large number of weights
(~5.8 million for the small-sized network we use). Therefore,
a single inference involves millions of multiplications and
additions and a large number of memory accesses. Several
solutions [1], [2], [3] have come up in the form of dedicated
accelerators for neural network computations. These solutions
help decrease the latency of these computations and intend
to reduce the power consumption as well by doing these
computations in an energy efficient manner. We take a closer
look at the trade-offs involved in the upcoming sections.

The problem of object detection becomes extremely chal-



lenging when there is not enough ambient light for capturing
good quality images. Loh and Chan [19] show the state of
object detection models on dark images. The problem becomes
even more difficult when the images are taken from a portable
device. This is because reduced shutter speeds are required
to capture more light in the images, which causes a blur
when camera is moving. Infra-red cameras have been shown to
perform well during night conditions with the help of active
illumination [16], where some of the techniques for object
detection in a day light from visible spectrum images have
been shown to work on the images taken by infra-red cameras
as well.

Ultrasonic sensors work by emitting sound waves and mea-
suring the object distance using time of flight. These sensors
offer a coarse level of information about the presence of an
obstacle, i.e., the distance of an obstacle within its beam width.
However, reliability of this sensing principle allows robust
detection of obstacles [26]. The complementary nature of
camera and ultrasonic modalities make it attractive to deploy
a fusion of these sensors for a more efficient perception of the
environment.

Consider a device to be used for obstacle detection by
a visually impaired person. In a typical computer vision
based obstacle detection system, the parameters of the object
detection model are learnt in a supervised setting. Apart from
pre-training the model on a large data set (like Imagenet [25])
for classification, images annotated with bounding boxes and
the class of object in the bounding boxes are used to train
the object detection model for the intended set of objects.
The system is, thereafter, able to recognize the objects that
it is trained for. Therefore, the set of objects defines the
visual vocabulary of the system. However, this also limits the
efficacy of the vision system to only the variety of objects and
conditions that it has been trained for. Any unseen object is
simply not detected. Even for those in the visual vocabulary,
success is limited by the accuracy of the algorithms involved.
On the other hand, the detection from ultrasonic sensors is
more robust and can be used to detect a large number of
obstacles with very few exceptions. This helps to reduce false
positives, as well as, helps in detecting obstacles which the
object detection system may not have been trained for. An
ultrasonic sensor also proves to be a very low power solution
for continuous monitoring of obstacles as demonstrated later
in the manuscript.

Human beings use variety of sensory organs for effectively
perceiving the environment. We adaptively choose the sensing
stream for performance and energy efficiency in our cognition.
e.g., recognition through audio may often make the visual
recognition redundant. The energy consuming visual modality
is turned off when we sleep, while we still get alerted with au-
dio cues, which suggests that we use it as a low energy trigger
even though it provides a limited amount of information.

The focus of this work is to demonstrate the adaptive
use of sensors in the obstacle recognition system for the
visually impaired. Figure 1 shows the scenario in the obstacle
recognition system under consideration. For reducing the high

power requirement of day-night image based object detection,
we propose a hybrid system that consists of a low power
ultrasonic sensor, a camera with modes for both near-infrared
and visible spectrum images as well as active illumination in
the form of infrared LEDs. We use the low power ultrasonic
sensor as an always-on sensor to trigger a more energy-
hungry sensor/computation only when necessary. The need
for illumination is also automatically detected and the infrared
LEDs are turned on. This adaptive control enables the system
to have a reliable performance while significantly saving the
energy consumed.

In summary, the contributions of this work are as follows:

1) We design a multi-sensor vision system for obstacle
recognition by the visually impaired people.

2) We demonstrate an adaptive sensor selection strategy for
power optimization in the proposed system.

3) We explore the trade-offs in latency, energy and accuracy
for using accelerators in the proposed system.

II. RELATED WORK

Design of a vision based portable system is a highly
complex design problem. When more sensors are added, the
problem becomes even more complex and additional tasks
for scheduling and determining the correct set of sensors
has to be handled. The correct set of design points is a
trade-off between energy efficiency, application performance
and scheduling strategy. The related work comes from three
domains:

a) Object detection in vision systems: After the break-
through success of Alexnet [15], image understanding started
to progress at a different pace. Works like RCNN [12], Faster
RCNN [24], RFCN [8] etc. along with data sets like Pascal
VOC [11], COCO [17] etc. have brought in a great amount
of progress to object detection techniques. The operations
carried out by the models are abstracted in terms of layers,
i.e., convolutional, pooling etc which are parameterized with
a large number of weights. The model, therefore, has millions
of parameters. The weights of the first few layers are obtained
by pre-training the models on larger data sets to learn generic
feature extractors. Thereafter, a smaller data set is used to learn
bounding boxes and object appearances for object detection.
Techniques like Faster RCNN, RCNN etc. use bounding box
proposals which are object independent and then classify them
using a classifier. A slightly different class of models like
SSD [18], YOLO [23] etc. jointly predict the bounding boxes
as well as the classes in a single forward pass making them
much faster, although, at the cost of accuracy. Objects are
predicted at different scales and aspect ratios along with con-
fidence scores for each object. The drawback of this approach
is that the data sets have to be carefully curated and enough
variety has to be captured in order to obtain a reasonably
accurate working model. Even then, there is no scope of
recognition of unseen obstacles/unaccounted variations in the
environment (like illumination changes). Therefore, though
camera based inferences are becoming increasingly popular,



operation of devices with only a camera as the sensor may
not be feasible/reliable in many of the applications.

b) Energy optimization in multi-sensor systems: Adap-
tively using low/high power sensors to achieve energy effi-
ciency has been demonstrated in some of the earlier works.
Dutta et al. [9] demonstrate a system for detecting rare
events over a large area where low power continuous sensing
followed by a high power confirmation is used to reduce
the system power in the sensor network. Tan et al. [29]
demonstrate a vehicle counting system where a closed loop
calibration mechanism is set up using a camera system and
low-power PIR sensors, thus allowing the system to pro-
vide accurate predictions over a long period of time without
needing manual intervention. Wren et al. [30] use a mixture
of high-fidelity camera sensors along with motion detectors
which contextually stitch information thus providing a higher
context awareness coverage than what is possible with high-
fidelity sensors alone due to both deployment and processing
costs. The concept of using distributed levels of sensing
with different resolution cameras has been demonstrated by
Hengstler et al. [13] in an application of distributed intelli-
gence surveillance.

In health care applications, a large number of patients
require continuous monitoring of certain parameters. Here
wireless body sensor networks have been used for monitoring,
enabling the patients to remain mobile and active during
the data capture. There have been a lot of efforts to reduce
energy consumption in such systems. A detailed survey has
been done by Rault et al. [22]. Sensor set selection is a
technique used where a subset of sensors, which are more
critical are selected to be transmitted. We use the technique
similar to sensor set selection for our system. However, one
major distinction between such systems and a portable system
such as ours is the extent of computation done on-board. A
large amount of computation for wireless health monitoring
systems is offloaded to a central server infrastructure and
therefore, the major energy consumption is in the form of com-
munication cost. Sun et al. [28] use a cheaper accelerometer
based activity detector for engaging high-energy sensors. Other
related works include context detection for communication
minimization/energy harvesting techniques. Possas et al. [21]
use a reinforcement learning approach to switch between IMU
and camera based approach for activity detection.

¢) Multi-sensor assistive solutions for visually impaired:
Mocanu et al. [20] demonstrated the use of ultrasonic sensors
along with a camera where obstacle detection was done using
feature based methods and then clustered using ultrasonic
sensor readings. Elmannai et al. [10] provide a detailed survey
on assistive devices built for visually impaired. However, none
of these systems use a hybrid multi-modal approach to sensing
and continue to rely on a single modality for perception.
Ultrasonic sensors have been shown [26] to be particularly
useful for detecting knee-above obstacles by augmenting them
with a cane. This has motivated using these sensors along
with cameras to provide a more detailed information about
the obstacles.
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Fig. 2: The ultrasonic sensor is mounted on top of the camera.
Both the sensors are connected through the GPIO pins of
the Raspberry Pi. The complete system is powered through
a power bank.

In the following sections, we demonstrate the design points
applicable for a multi-sensor vision-based system. We also
explore the pros and cons of including an accelerator in the
system.

III. SYSTEM DESCRIPTION

In this section, we discuss the hardware and software details
of the proposed obstacle detection system. In addition, we
describe the available design choices and define the design
points being explored in further sections.

A. Prototype

We use a Raspberry Pi 3B [4] as the base platform which
is connected to the Maxbotix Ultrasonic sensor (MB7383) [5]
and a Waveshare RPi IR-CUT Camera [6]. The camera has
an electronically controllable filter for filtering the IR light in
bright light and another mode for capturing IR light emitted
from the LEDs. The typical control of the LEDs is using light
dependent resistors. However, we control the LEDs directly
through software allowing for finer control on the time for
which the LEDs are on. A picture of the prototype is shown in
Figure 2. A movidius neural compute stick (v1) [1] is used for
accelerating the deep neural network computation for object
detection.

B. Software Setup

The Raspberry Pi 3B [4] runs a Raspian Stretch operating
system. The ultrasonic sensor outputs the detection distance.
Therefore, in the absence of an obstacle, we get the maximum
value (9999 mm in this case). We use an ultrasonic threshold
(7000 mm) to determine if the user is advancing towards an
obstacle. A single thread constantly reads ultrasonic sensor
data from the serial interface and compares it to a threshold.
If an obstacle is detected, it sets an event flag which captures
the image in the selected capture mode and then processes
the image in the selected processing engine. We use the SSD
Mobilenet [14] model for object detection. Figure 3 explains
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Fig. 3: Execution flow for the software setup. Ultrasonic
samples are available in the serial buffer at the rate of 6
samples per second.

the flow. The processing engine in our case can be either a
Raspberry Pi CPU or a Raspberry Pi CPU accelerated with a
Movidius Stick.

There are two available capturing modes:

1) PiCam Interface: In this interface, the camera is always
on and keeps sending frame data to the Raspberry Pi where
the on-board GPU keeps receiving and storing the frames [7].
As soon as an ultrasonic detection is made, the frame is
transferred to the main memory via DMA and is accessed by
the thread running on the CPU, where it uses the processing
engine to find objects. It takes ~ 0.42s to get a frame in this
mode. The camera constantly consumes 80 mA of current in
this mode.

2) PiCam Lazy Interface: In this interface, the camera
object is initialized only when an ultrasonic detection is done.
The drawback here is the time taken for the camera to open and
stabilize. It takes ~ 2.3s for lazily getting a frame. The benefit
of using a lazy capture interface is that the power consumption
reduces to almost OW when the camera is not being used.

C. Experiments

In this section, we describe the experiments conducted.
There are four design points for the system:

1) PiCam Interface + Accelerator
In this mode, the camera is always on, however, frame is
only captured and processed once an ultrasonic trigger
is received. The frame captured by the CPU from the
camera is then sent to the Movidius NCS to process
and the detection results are obtained from the same.
2) PiCam Interface + CPU
In this mode, the camera is always on and a thread waits
on the ultrasonic trigger to start a multicore object detec-
tion model inference on the CPU. This mode allows us
to remove the accelerator completely without much loss
of latency. Even though the multi-core implementation

is power-hungry, the idle current reduces significantly
since the Movidius NCS is now unplugged.

3) PiCamLazy Interface + Accelerator
In this mode, the camera is uninitialized and powered
off. The camera is turned on only when a trigger is
provided by the ultrasonic sensor. Once a frame is
captured, it is sent to the accelerator. This mode prevents
the idle current of the camera. It is helpful in cases
where the person walks slowly. Therefore, the object
is captured with delay, however, the user is notified
immediately.

4) PiCamLazy Interface + CPU
In this mode, the camera is turned off until an ultrasonic
trigger is received. The processing is done on the CPU.
If the occurrence of obstacles is expected to be relatively
low, choosing this mode is preferable over choosing
PiCamLazy + Accelerator since the idle power in case
of this mode is much lower. The latency of detection
suffers and the person might have to wait for a few
seconds to get the classification output.

The accuracy of the system is defined as the fraction of
objects which were identified correctly in at least one of the
frames containing the object, similar to the metric defined by
Sobti et al. [27]. The SSD Mobilenet [14] model predicts
the bounding boxes containing the objects as well as the
class of objects which it contains. If the prediction confidence
is greater than 0.5, the correct class is predicted and the
intersection over union of the predicted box and the ground
truth bounding box is more than 0.5, the object is considered
to be detected. The accuracy loss in different modes is due to
the following reasons:

1) When an accelerator is not used, the individual infer-
ences on frames are slow. Therefore, the classifier gets
fewer frames to predict the object correctly as compared
to the case when an accelerator is used.

2) When the camera is accessed via the PiCam Lazy
Interface, the time it takes for the camera to capture a
frame can be substantial. During this time, the object
may move/completely exit the frame. Therefore, the
accuracy drops in this case as well.

The aim of the experiments which follow is to address the
following questions:

1) What is the loss of accuracy when an ultrasonic based
trigger is used to initiate the camera/infrared illumina-
tion rather than continuously capturing frames? How
much benefit in terms of energy can this methodology
provide?

2) When using an accelerator to identify the detected
objects, what is the benefit in terms of accuracy and
what is the cost paid in terms of power?

3) Is it feasible to completely shutdown the camera when
using ultrasonic trigger (PiCam Lazy Interface) with an
acceptable loss of accuracy?

For this analysis, we use the prototype discussed in Section
III-A and record both video as well as ultrasonic data. This
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Fig. 4: Samples from the day/night sequence. The data contains time stamped ultrasonic samples and image samples with
annotated bounding boxes, object number and class labels. The time series information for the ultrasonic sensor data for 1.2
seconds around the timestamp of the image is shown in the plot. We can see the distance of the object reducing as the user

walks towards it.

data is then processed offline to validate the accuracy and
power benefit. This was done using the methodology described
in Section III-D. We cover essentially three scenarios:

1y
2)

No obstacles are present in front of the user

Obstacles are present and seen in the visible spectrum
in bright conditions

Obstacles are present and seen only by the near-infrared
active illumination in dark or low-light conditions

3)

We use two recorded sequences — a day time sequence and a
night time sequence in order to empirically evaluate the power
consumption of the different configurations. Samples of the
sequences are shown in Figure 4. We have considered bicycles,
cars and motorbikes as obstacles which are recognizable by
the vision system but this can be extended to other objects
using standard computer vision techniques. Note that we have
annotated only the obstacles which are in the path of the user
and not all the objects in the image since they are irrelevant
for obstacle detection. This is another way in which the hybrid
approach outweighs the pure vision based approach since
processing has to be done only when the obstacle is in the
way. This is still a hard problem to solve with computer vision
whereas obstacle recognition is shown to be effective using

Component Power
Raspberry Pi 1.020 W
Movidius Stick 0.450 W
Camera 0.470 W
Ultrasonic Sensor 0.015 W

TABLE I: The different components of the static power are
shown. The numbers above are from measurements during the
idle state.

ultrasonic sensors used in devices like Smartcane [26]. Results
are reported in Section IV.

D. Methodology

a) The base power: The base system contributes signif-
icantly to the overall energy consumption of the system. A
raspberry pi system doesn’t have a power down mode. There-
fore, the base power remains at ~ 1.02W/ even when there is
no useful processing except that the device is booted up and
running the operating system. In this state, no peripherals are
plugged in and the sensing process has not even been started.
For a real energy efficient device it is important that the base
system has a very low power consumption. A possible alter-



PE Object  RGB/IR Interface Energy (mWh)
PiCam 43
RGB PiCam Lazy 35
L Yes
Movidius .

+ CPU IR PiCam 63
PiCam Lazy 42
No ) PiCam 36
PiCam Lazy 29
RGB gg;ﬁ Laz gi

CPU Yes Y
Multi- IR PiCam 48
core PiCam Lazy 36
No ) PiCam 26
PiCam Lazy 20

TABLE II: The dynamic power of different scenarios measured
over 1 minute of operation. This is used to identify the energy
per frame which is further used for the power analysis.

native would have been to use a micro-controller with power
down mode(s) or an ARM based SoC where the power-down
mode was available. Since the objective is to only illustrate
the use of heterogeneous modalities, we use the Raspberry Pi
platform and present the results based on incremental power
consumption to the base power of the system. There is also a
major difference in the compute capability and library support
available for micro-controller/ARM based SoCs.

b) Power for components: The energy consumption is
modeled in two parts - the static power and the dynamic power.

Static power is the fixed amount of power which gets
consumed consistently for a particular configuration. Table
I shows the different components of the static power. The
power due to Movidius and camera do not contribute in the
non-accelerated and the lazy interface respectively since the
components are effectively disconnected.

Dynamic power is the power required for operations which
consume a variable amount of power during their operation,
e.g, capturing and processing a frame. For calculating the
dynamic power, we measure the energy dissipated in any
particular configuration over one minute of operation and
obtain average power measurement from the same. Table II
shows the dynamic power measurements for different design
points/configurations. As expected, using the PiCam Lazy
interface has a lower energy consumption than using the
PiCam Interface counterpart. The difference in the energy
consumption between the case when an object is present versus
the one where it is not is the major contributor to energy
saving. Another observation from the table is the difference
in Movidius + CPU and CPU Multi-core options. The lack of
constant current consumption by the Movidius NCS accelera-
tor makes the system much more energy-efficient. The energy
is only consumed when an object is present in front of the
system.

Corresponding time of capturing and processing a frame is
shown in Table III. We use Algorithm 1 for calculation of the
energy and accuracy. This framework enables us to study the
effects of different configurations in detail in a convenient and

accurate manner.

PE Interface Capture and Process time (s)
Movidius + CPU _Ficam 0.789

PiCam Lazy 2.670
CPU PiCam 2.114

PiCam Lazy 3.990

TABLE III: Time taken to capture and process a single frame
in one of the configurations

Algorithm 1: Algorithm for energy/accuracy calculation
1 object_det_status = {0,0,...};

2 energy = 0;

3 while time < end_time do

4 if ultrasonic_sample < threshold then
5 time += camera_open_time;

6 img = image_next_to(time);

7 if object_detected(img) then

8 object_det_status[obj_id] = 1;
9 end

10 time += capture_and_process_time;
11 energy += energy_per_frame;

12 else

13 energy += static_power * (time - prev_time);
14 end

15 prev_time = time;

16 end

17 accuracy = sum(object_det_status)/total_objects;

IV. RESULTS

The primary objectives behind the experiments were ex-
plained in Section 3. Our analysis is based on the sequences
described in Section III-C. As mentioned before in Section
III-C, accuracy represents the number of correctly recognized
obstacles in at least one of the frames where the obstacle was
present in the view. The energy calculations are done using the
methodology described in Section III-D. Figure 5a shows the
energy and accuracy of all the design points analyzed. Note
that in any case, the hybrid system based detection is superior
since unseen obstacles can be detected by the ultrasonic sensor.

The key observations obtained from the analysis are the
following:

a) What is the loss of accuracy when an ultrasonic based
trigger is used to initiate the camera/infrared illumination
rather than continuously capturing frames? How much benefit
in terms of energy can this methodology provide?: In the day
sequence, the inference based on the neural network works
reasonably well. Therefore, the accuracy is much higher as
compared to the accuracy in the night sequence. When using
the ultrasonic sensor based trigger, the accuracy suffers a hit
of ~17%. The energy reduction is 20% simply by processing
the frame only when an obstacle is detected. The latency in
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Fig. 5: Exploring the energy-accuracy tradeoff for different design points in day and night environments

this case is 0.789 sec, which is similar to the case a pure
vision based method. Note that the accuracy numbers do not
have objects which are not recognizable by the neural network
however, in practice a hybrid system would be better for
obstacle detection. In the night sequence, using an ultrasonic
trigger alone reduces the energy consumed by half (~49%).
This shows the promise of using an ultrasonic trigger in such
systems.

b) When using an accelerator to identify the detected
objects, what is the benefit in terms of accuracy and what
is the cost paid in terms of power?: When the accelerator is
dropped from the configuration, an energy reduction of 55% is
achieved at a loss of just ~4% accuracy. The primary reason
is the reduction in the static power of the configuration. A
similar configuration in the night sequence provides an energy
reduction of 72%.

c) Is it feasible to completely shutdown the camera
when using ultrasonic trigger (PiCam Lazy Interface) with
an acceptable loss of accuracy?: The PiCam Lazy Interface
performs very well in the day, with energy reduction of 81.5%
with <10% decrease in accuracy. However, as the detector
becomes less confident (night sequence), the delay incurred
by the lazy capture causes much more reduction in accuracy.
The energy reduction in the night time sequence is 90%.

A. Occupancy and Persistence

For further explaining the fall in accuracy and the expected
increase in lifetime, we introduce the concept of occupancy
and persistence. Occupancy is defined as the proportion of
time of operation during which an obstacle is present in front
of the user. Persistence is defined as the number of frames for
which a certain object stays in the field of view. A histogram
of the persistence of objects in both sequences is shown in
Figure 6.

In the recorded sequences, since the focus was on capturing

mmm Day Sequence
Night Sequence

Persistence (number of frames)

0 5 10 15 20 25 30 35
Object ID

Fig. 6: Histogram of persistence of objects in the two se-
quences

a significant number of obstacles or analysis, the occupancy
is ~31% and ~22% for the day and night sequences. In a
practical scenario, the occupancy is expected to be much lower
since the person is unlikely to come across obstacles that
frequently. In such a scenario, the energy saving increases
linearly with the occupancy. The slower configurations of
Lazy Interface/without accelerator lose accuracy due to lower
persistence of objects in the recorded sequence (median of
6.0). Thus, in a particular configuration, if the capture and
process takes more time than the capturing of 6 frames, the
object would no longer be “captured” and the object would
be missed. Therefore, a person walking at a slower pace
may be able to get better energy performance with a slower
configuration since the persistence of objects would be higher.

B. Online Validation

Finally, we measure the energy reduction by using the
device in the vision only mode and the promising triggered
modes. The sequences are recorded by walking through the
same environment keeping the device in the respective modes.



We have shown the energy consumption and reduction in
average power for these sequences in Table IV. Note that
the reduction is not directly comparable to the sequences
shown earlier due to different levels of occupancy, however the
sequences are recorded to estimate the typical usage scenario.

Mode Energy Time Energy w/o Avg. Power
(mWh) (s) Base (mWh) Reduction (%)
Vision Mode 215 338 119 0
PiCam (Movidius) 183 318 93 16.9
PiCamLazy (Movidius) 157 326 65 433
PiCamLazy (CPU) 122 308 35 67.7

TABLE IV: Online validation results for sequences in the same
environment captured in different modes

V. CONCLUSION AND FUTURE WORK

Heterogeneity in modalities and their adaptive control
enables a system to be energy-efficient while still delivering
high performance. In case of an obstacle avoidance system,
a multi-sensor system is able to detect a much broader
range of objects while being able to recognize objects in the
visual vocabulary. Since the modalities are complementary,
the device now covers an extended range of environmental
contexts like ambient light and the types of objects learnt by
the vision system. An efficient and accurate obstacle detection
system has been demonstrated with the help of ultrasonic and
vision sensors. The use of an accelerator reduces the latency
of operation however the energy cost paid is significant. In
our experiments, an adaptive control of camera and infra-red
illumination along with removal of the accelerator reduces
the energy consumption by up to 90% with roughly 25%
decrease in accuracy. In future, it would interesting to see
the state of the art that can be achieved with low base power
micro-controller/microprocessor based systems.
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