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The design of modern digital system is influenced by several technological and market 
trends, including the ability to manufacture ever more complex chips, but under 
increasingly shorter time to market. This particular combination of increasing design 
complexity coupled with shrinking product design cycle times has fueled the need for 
design reuse in the IC-design industry. System–level design reuse is enabled by modern 
design libraries, which frequently consists of pre-designed mega cells. System –on-chip 
or system on silicon are the term used to describe product containing and integrating such 
mega cells onto a single silicon chip. This trend is expected to continue with the 
shrinking device sizes and with the capability of embedding DRAMS with logic on the 
same chip. 
Digital circuits can be classified in two categories one is general purpose systems and 
another is application specific or Embedded systems. 
Architecture of embedded system is consists of software and the hardware part along 
with memory modules. 

Embedded system architecture 
 
Three important aspects of memory for Embedded systems are : 
Area :  50-70% of ASIC/ASIP may be memory. 
Performance : 10-90% of system performance may be memory related. 
Power : 25-40% of system power may be memory related. 
 
So, it may be seen that memory plays a very crucial role in embedded system designs. In 
recent years there is considerable increase in the processor speed but increase in speed of 
memory is very less. That’s why memory is bottleneck of all the systems. Therefore we 
require optimization methods for increasing the performance and reducing the power of 
both on-chip and off-chip memories. In rest of the report these topics are dealt in detail. 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 

 
 



DRAM ORGANIZATION 
In DRAMS Rows and columns addresses are used at different  points of time, the same 
address pins are used to time-multiplex between row and column addresses. 
The DRAM access is shown with 20 bit multiplexed address Row address from 19-10 
and Column address  from 9-0 

 
                                        DRAM  ORGANISATION  

  
                TIMING DIAGRAM FOR MEMORY OPERATIONS 
 
DIFFERENT ACCESS MODES 
  
Read Mode – single word read, involving both row-decode and column-decode. 
 
Write Mode – single word write, involving both row-decode and column-decode. 
 
Read-Modify-Write (R-M-W) Mode – single word ,involving read from an address, 
followed by write to the same address. This mode involves one row-decode and column-
decode stages each, and is faster than two separate Read and Write accesses. 
 
Page Mode Read – successive reads to multiple words in the same page. 
 



Page Mode Write – successive writes to multiple words in the same page. 
 
Page Mode Read-Modify-Write – successive R-M-W updates to multiple words in the 
same page. 
 
Memory read and write operation can be represented by control distribution flow models 
for DRAMS. We can model different operations by nodes in CDFG. 
 

  
 
So we can represent READ, WRITE  and  R-M-W operations. 
        

 
 
Memory read                         Read-Modify-Write                                  Memory-Write 
 
 
OPTIMIZATION TECHNIQUES FOR DRAMS 
 
1.  CLUSTERING OF VARIABLES: 
scalar variables are normally assigned to on-chip registers. However, if the number of 
such variables is large, it might be necessary to store these variables in memory. A 
related optimization problem that arises in this address assignment is that, consecutive 
accesses to two different scalar 



variables can be implemented as a single page mode operation if both are located in the 
same memory page.  
 
2 REODERING OF MEMORY ACCESSES 
 The correct ordering of memory accesses is critical for exploiting efficient memory 
access modes such as R-M-W. For example, in the code: “a[i] =b[i]+a[i]”, the sequence of 
accesses: “Read b[i] ! Read a[i] ! Write a[i ]” allows the utilization of the R-M-W mode 
for the address a[i], while the sequence “Read a[i] ! Read b[i] ! Write a[i]” does not allow 
the mode, because of the intervening “Read b[i]” operation. 
 
 
3. HOISTING OPTIMIZATION  
Due to the time-multiplexing of the memory address bus between row and column 
addresses, a scheduling optimization is possible when two addresses in the same memory 
page are accessed from different paths of a conditional branch. 
 
 

 
 
 
 
 
4. Loop Transformation 
In order to utilize the page mode operations, the CDFG for the behavior has to be 
transformed to reflect the page mode operation. Since most of the computation occurs in 
the innermost loops of nested loop structures, concentration should be on the memory 
accesses in the innermost loops. 
If a loop accesses locations from only a single memory page Per-iteration, e.g., there is 
only one read operation (Read a[i]) per iteration, the page mode operations can be applied 
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directly by restructuring the loop so that it iterates over the array in blocks of P iterations 
(where P is the page size, in words), so that we have one page mode read for every P 
iterations. Figure   shows a section of the CDFG of an example loop with a single 
memory access (a[i]) in one iteration. We introduce an inner loop in which up to P 
elements from the same page are accessed. The transformed CDFG is shown in Figure . 
Note that the Row Decode and Pre charge nodes enclose the inner CDFG loop, forming 
one complete page mode operation. 
 
 
 
 

 

CDFG OF ORIGINAL CODE TRANSFORMED CDFG 



 
 
 
 
POWER OPTIMIZATION IN  MEMORY ACCESSES 
 
POWER minimization efforts at the behavioral level usually attempt to reduce signal 
transition count, particularly off-chip transitions, owing to dynamic power dissipation 
accounting for a significant fraction of the total power dissipation in CMOS circuits 
.Power reduction in memory-intensive applications is done by analyzing the access 
patterns of behavioral arrays in the specification and organizing the arrays in memory so 
as to minimize transitions on the memory address buses. Examples of memory-intensive 
applications that exhibit regular access patterns exploitable by this   technique are digital 
signal processing, and image and audio applications such as filters, relaxation algorithms, 
and compression algorithms such as discrete cosine transform (DCT) and inverse discrete 
cosine transform(IDCT).  Given that off-chip capacitances are three orders of magnitude 
larger than typical on-chip capacitances , we can effect significant power savings by 
reducing the switched capacitance of the off-chip address bus drivers through reduction 
of transition activity on the memory address bus. Furthermore, reduced activity in the 
address bus also leads to reduced activity in the memory address buffers and decoding 
circuitry. Studies have shown that power dissipation in the address decoder and address 
buffers of typical memory chips constitute a significant portion of the power consumed 
(up to 50%) in the memory chip . Hence, design techniques leading to decrease in power 
dissipation in this part of the memory will significantly reduce the overall power 
dissipation of the application.  
This technique takes as input the behavioral specification that is to be synthesized; the 
output is the assignment of arrays in the specification to physical addresses in memory. 
For each array, output  is the expression for accessing an arbitrary memory element as a 
function of its behavioral array index and the array dimensions that corresponds to the 
best memory mapping strategy for the array. 
We first assign the arrays in the specification to locations in a logical memory, and 
employ a Gray code converter (GCC) in the address generator to map logical memory 
addresses to physical memory locations. The GCC converts a logical address into Gray 
code , thereby ensuring that access of consecutive logical memory addresses results in 
then transition of exactly one bit on the memory address bus. The GCC helps bring down 
the address bus transition count to a minimum, but these memory mapping strategies are 
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valid techniques for ensuring reduction in transition count even in the absence of the 
GCC from the architecture. 
 

                      
 
 
 
 
This approach can be shown by a  sample behavior, shown in Fig. shows a sequential 
mapping of the three arrays a ,b , c . In this case, the sequence of logical memory 
locations accessed is: 0, 3, 6, 1, 4, 7, 2, 5, and 8. For the same example, as shown in  c, an 
interleaved organization of arrays into logical memory, where the array elements have 
been stored in the order in which they are accessed in the loop. This mapping, when 
converted into Gray code, ensures the transition of exactly one bit on the memory address 
bus between consecutive accesses, resulting in a significant decrease in address bus 
transitions; for instance, the transition count decreases from 18 in fig b to 8  in fig c, 
assuming that both base addresses start at zero. 
 

A. Array Mapping Schemes 
 This gives mapping strategies for two-dimensional arrays. For the effective mapping  
following three strategies has been applied for arrays into memory. 
 
1) Row Major: A simple way of mapping a logical array to physical memory  
is to store the elements in row major form , i.e., the elements of the first row are placed in 
consecutive memory locations in order of increasing column index. This is followed by 
the elements of the second row in the same order, and so on. 
 
2) Column Major: In column-major mapping , the elements of the two-dimensional array 
are stored column by column. 
 
3) Tile Based: This mapping style first partitions the bigger array into tiles of smaller 
rectangles. Here, the elements of a row (or column) of tiles are stored in consecutive 
memory locations, with the elements of the tiles themselves being stored in either row or 
column major format . Similar ideas have been used in the context of compilers, where 
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cache reuse is improved by dividing loop iteration space into tiles and transforming the 
loop nesting structure to iterate over the tiles.  

 
 
 
 Block decomposition of arrays in a multiprocessor environment  is also based on a 
similar concept. 
 
 

TILE  MAPPING  STRATEGY 



B. EXTRACTION OF ACCESS  PATTERN 
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Fig. A shows a simplified version of the code kernel for a successive over relaxation 
(SOR) algorithm , which is often used in the domain of image-processing applications. 
The plus-shaped contour in Fig. B shows the basic access pattern of the elements of array 
in the inner loop. Fig. C shows that this shape of accesses moves across by two columns 
to the right as we iterate through the inner loop. The second iteration of the outer loop 
causes the first pattern of the previous loop to move vertically down by one row. The 
remaining inner loop accesses are as before. The one element that is Common to 
successive patterns can be stored in a register instead of being accessed from memory 
again in the next iteration  hence, the effective access pattern for this example is as shown 
in Fig. D. This pattern determines the dimensions of the tile to be used in the tile based 
mapping scheme. 
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C. Analysis of Mapping Schemes 
This analysis will determine which mapping styles should be used. This analysis helps 
determine the mapping style that minimizes the total transition count .The observation 
that, in general, there is a low Hamming distance between elements in the same tile or 
adjacent tiles, and a possibly high Hamming distance between elements in distant tiles.  
Define a maximal transition as occurring when two logical addresses with a large 
difference are accessed in succession. A minimal transition occurs when this difference is 
small. In this case, large means comparable to the dimension of the array. For example, 
we treat all consecutive accesses to elements in the same tile as minimal transitions.  To 
conclude we can use following heuristic 
 
 
 
Let  the  inner loop index be   i and outer loop index be j 
 Extract the basic repeating shape from the access patterns 
Determine the enclosing  rectangle R. 
Let i-dimension of R be Li  and j- dimension Lj 
If increment of j in outer loop =Li and j-dimension be Lj 
If increment of j in the outer loop =Lj or min(Li,Lj)> 2 
Then use tile based  mapping 
Else 
     If Lj> Li 
            Then use column –major mapping 
 Else 
     Use row-major mapping 
     End if 
End if 



 



ORGANISATION: 
 
 
 
 
 
 
 
 
 
 
 
 
Figure shows a simplified view of an embedded processor core-based system, consisting 
of a processor core, on-chip memory, and synthesized block, interfacing with off-chip 
DRAM. The synthesized hardware block, often the result of behavioral synthesis, 
performs the functions specific to the application that are mapped to hardware, possibly 
for performance considerations. This decision of mapping different parts of a design into 
hardware and software is taken in a prior Hardware/Software partitioning step. Here, we 
assume that the partitioning has already been performed. The on-chip memory can be 
implemented as a combination of cache and Scratch-pad SRAM.  

Data cache is fast, on-chip memory forming an interface between the processor 
and the off-chip  DRAM, that reduces the effective memory access time by storing 
recently accessed data. Internally, the cache is divided into blocks, or cache lines, which 
constitute the smallest unit of interaction between the cache and the off-chip memory. 
Scratch-pad  SRAM is on-chip memory, to which the assignment of data is compiler-
controlled. In brief, a portion of the total data memory space is mapped to on-chip SRAM 
(typically used to store critical data), with the advantage of guaranteed fast access, unlike 
the cache, where hardware-controlled storage and replacement strategies could flush out 
data into the off-chip memory, resulting in cache misses that stall the processor.  

  
Efficient Utilization Of  Scratch-Pad: 
Efficient utilization of on-chip memory space is extremely important in modern 
embedded system applications based on microprocessor cores.  
The on-chip SRAM, termed Scratch-Pad memory, is a small, high-speed data memory 
that is mapped into an address space disjoint from the off-chip memory, but connected to 
the same address and data buses. Both the cache 
and Scratch-Pad SRAM have a single processor cycle access latency,  whereas an access 
to the off-chip memory (usually DRAM) takes several (typically 10–20) processor cycles. 
The main difference between the Scratch-Pad SRAM and data cache is that the SRAM 
guarantees a single-cycle access time, whereas an access to cache is subject to 
compulsory, capacity, and conflict misses. 
When an embedded application is compiled, the accessed data can now be stored either in 
the Scratch-Pad memory or in off-chip memory. In the second case, it is accessed by the 
processor through the data cache.  
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The data address space mapping is shown in Figure for a memory of size N data words. 
Memory addresses 0 . . .P-1 are map into the Scratch-Pad memory, and have a single 
processor cycle access time. Thus, S HIT would be asserted whenever the processor 
attempts to access any address in the range 0 . . .P-1. Memory addresses P . . . N-1 are 
map into the off-chip DRAM, and are accessed by the CPU through the data cache. A 
cache hit for an address in this range results in a single cycle delay, whereas a cache miss, 
which leads to a block transfer between off-chip and cache memory, results in a delay of 
10-20 processor cycles. 
 The aim is to maximize the overall memory access performance by carefully 
mapping of each scalar and array variable. So, there is the problem of  partitioning the 
variables between Scratch-Pad and off-chip DRAM. This is done by mapping those 
variables into SRAM that are estimated to cause the maximum number of conflicts in the 
data cache. 
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Features Affecting Partitioning: 
Scalar Variables And Constants: 
If scalars are assigned to DRAM, it is impossible to avoid the conflicts with arrays. 
That’s why it is better to assign them to SRAM. 
 
Size of arrays: 
If the size of array is larger than size of SRAM, then that should be mapped into data-
cache. Otherwise there will be only a part of array into SRAM. Since loops generally 
access array elements, there is no gain in mapping different parts of same array to 
memory with different characteristics. 
 
Lifetime Of Variables: 
The variables having different lifetimes can be stored in same memory location. So if two 
arrays or variable have conflicting lifetime, then cache miss can be avoided by just 
putting one of them into SRAM. 
 
Access frequency of variables: 
The access frequency of variables also affect the decision of   partitioning data into 
SRAM and d-cache. If   the frequency of access is less then it is preferable to put into 
DRAM. Otherwise it would lead to inefficient utilization of SRAM. 
 
Power Optimization In On-chip SRAM: 
Low power is really hot issue in today’s system design. In the case of embedded systems, 
memory access patterns can typically be profiled at design time. This information can be 
used to reduce the power consumption into SRAM. One solution consists of mapping the 
most frequently accessed addresses onto the on-chip SRAM to guarantee power and 
performance efficiency.  
 The approach can be understood by a simple example. Suppose the fig shows a 
processor memory system and it’s memory access profile. We see here most of the 
memory accesses  take place between middle 4K range. 
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The best possible way to minimize the power in this case is shown in fig below. 
           
 
 
 
 
 
 
 
 
 
 
 
Here we have separated the most frequently accessed 4K from rest of memory. Since the 
power dissipation is smaller in the smaller sized memory. The performance of the system 
greatly increases by dividing the memory into different banks. 
For this following steps are taken: 
1. Dynamic access Profile: This is obtained by a simulator, the output of  which is the 
memory access pattern of different accesses.  
2. Partitioning: The partitioning algorithm requires, which takes the dynamic access 

profile as input and gives the cuts into the memory for minimum power. 
3. Decoder Generation: This is required to generate the control signals to select a 

particular memory bank. This takes as a input the address and gives the control signal 
and physical address as output. 

4. Memory Generation: This is done by memory synthesis tool which takes different 
ranges of address as input and generates the memory block according to that. 

5.  Placement And Routing: Finally placement and routing of all the blocks   is done. So 
the output is complete layout. 
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CONCLUSION: 
 
The  design of embedded  systems –on-chip(SOC) is influenced by  several evolutionary 
trends, such as the increase in design complexity made through shrinking feature sizes 
coupled with larger die sizes for chips. On the other hand , increasing complexity of 
building blocks leads to a revolutionary challenge in the emerging system design process 
that combines complex Intellectual-property(IP) library blocks to create specialized 
embedded SOC under tight time-to market deadline. 
 
In this report we have included organization of modern DRAMS.  We included models 
for representations of memory accesses, and transformation techniques for incorporating 
page mode ,and other efficient access features during synthesis. We then included a 
strategy for minimizing memory access related power by suitably mapping behavioral 
arrays to memory. 
 
We then addressed architectural modifications of  embedded SOC’s memory subsystem. 
The application specific nature of embedded systems permit the incorporation of 
relatively unconventional components compared to general purpose processing domain.  
One such component  is Scratch-Pad memory-on chip memory to which assignment of 
data is compiler controlled. 
 
Finally we outlined  a Layout –Driven memory synthesis for Embedded systems on-chip. 
In this we have explained a Strategy for partitioning of Scratch-Pad SRAM into multiple 
banks, so that overall  energy consumption is minimized. 
 
As the technology is advancing there is more possibility of memory optimization. Since 
now embedded DRAMs are coming, which can be fabricated with the same technology 
which is used for logic design, hence we can find more efficient modes for performance 
and power optimization techniques. 
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