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Abstract 
 

Complex systems can no longer be effectively designed without considering the 
interaction of the software and hardware domains early in the design process. It involves the 
development of an environment for the co-design of concurrent heterogeneous, hardware 
and software systems enabling the complete exploration of the physical design space 
between the two domains. This paper presents some heuristics for automatic 
hardware/software partitioning of system level specifications. Partitioning is performed at 
the granularity of blocks, loops, subprograms, and processes with the objective of 
performance optimization with a limited hardware and software cost. We define the metric 
values for partitioning and develop a cost function that guides partitioning towards the 
desired objective. We consider minimization of communication cost and improvement of 
the overall parallelism as essential criteria during partitioning. There are various heuristics for 
hardware/software partitioning. We give a brief idea of  the simulated annealing algorithm, 
tabu (forbidden) search algorithm, energy-conscious HW/SW-partitioning and a detailed 
discussion on the hierarchical evolutionary approach.   In hierarchical evolutionary approach, 
we apply a hierarchical structure and dynamically determine the granularity of tasks and 
hardware modules to adaptively optimize the solution while keeping the search space as 
small as possible. Imprecisely Specified Multiple Attribute Utility Theory has the advantage of 
constraining the solution space based on the designer’s preference, but suffers from high 
computation overhead. We also discuss the technique to reduce this overhead. 
 
Introduction 
 
 

New tools which extend design automation to system level have to support the 
integrated design of both the hardware and software components of an embedded system. 
The input specification accepted by such design tools describes the functionality of the 
system together with some design constraints and is typically given as a set of interacting 
processes. Many embedded systems have strong requirements concerning the expected 
performance. Satisfaction of these performance constraints can frequently be achieved only 
by hardware implementation of some components of the specified system. This can be 
realized by using dedicated ASICs (application specific integrated circuits) or FPGAs (field-
programmable gate arrays) as part of the implementation architecture. Another solution in 
order to meet design requirements is to develop an ASIP (application specific instruction-set 
processor) with a carefully selected instruction-set and architecture, which produces the 
required performance for the given application. 
 

Hardware/software partitioning, is an important step in hardware/software co-
design. HW/SW partitioning actually means the selection of appropriate part of the system 
for HW/SW implementation i.e. which system tasks should be realized in which hardware 
modules. This has crucial impact on cost and overall performance of the system. For small 
systems partitioning can be done by designer’s experience and intuition. For large systems it 
needs high performance heuristics and CAD tools. It is clearly critical to board-level designs 
and is becoming increasingly important in system-on-a-chip (SOC) designs as more and 
more intellectual property (IP) components are available. The objective of 
hardware/software partitioning is to search for an assignment of system tasks to hardware 
modules which not only satisfies the constraint (such as timing), but also optimizes desired 



quality metrics, such as cost, power, and so on. This type of constrained optimization 
problem has been shown to be NP-hard.  
 

Various steps followed in HW/SW partitioning are: problem formulation, 
performance optimization, cost minimization, meeting all design constraints. Some 
performance constraints are met only in HW implementation, so for this dedicated 
ASIC/FPGA is used. Partitioning approaches differ in Initial specification of the level of 
granularity, degree of automation, cost function and the partitioning algorithm used. 
Therefore the main partitioning issues are: the specification of abstraction level, granularity, 
system-component allocation, metrics and its estimations, objective and closeness functions, 
partitioning algorithms, output, flow of control and designer’s interaction. The metrics 
generally used are: monetary cost, execution time, communication bit rates, power 
consumption, area, pins testability, reliability, program size, data size, memory size etc. 
 
The Co-Synthesis Environment 

 
Fig. 1. Overview of the co-synthesis environment 
 

An overview of the structure of the hardware/software co-synthesis environment is 
depicted in Figure 1. The input specification describes system functionality without 
prescribing the hardware/software boundary or implementation details. This specification is 
formulated as a set of processes interacting via messages transmitted through 
communication channels. This specification is further decomposed into units of smaller 
granularity. The partitioning algorithm generates as output a model consisting of two sets of 



interacting processes. The processes in one set are marked as candidates for hardware 
implementation, while the processes in the other set are marked as software implementation 
candidates The main goal of partitioning is to maximize performance in terms of execution 
speed. 
 
The partitioning steps 
 

 
Fig. 2. The partitioning steps 

 
1. Extraction of blocks of statements, loops, and subprograms: processes that are responsible for most 
of the execution time spent inside a process (regions with a large computation load). 
Candidate regions are typically loops and subprograms, but can also be blocks of statements 
with a high computation load. The designer guides identification and extraction of the 
regions and decides implicitly on the granularity of further partitioning by identifying a 
certain region to be extracted (regardless of its computation load) assigning hardware or 
software partition and by imposing boundary values. 
 
2. Process graph generation: :During the second step an internal structure, called the process 
graph, is generated. 
 
3. Partitioning of the process graph: We formulate hardware/software partitioning as a graph 
partitioning problem performed on the process graph. 
 
4. Process merging: During the first step one or several child processes are possibly extracted 
from a parent process. If, as result of step 3, some of the child processes are assigned to the 
same partition with their parent process, they are, optionally, merged back together. 



 
Partitioning algorithms 
 

Partitioning is mainly divided into two classes: structural partitioning and functional 
partitioning. Structural partitioning can be easily mapped to a graph partitioning problem. In 
this, the size/performance tradeoffs are difficult due to large number of objects. Therefore, 
it is limited to only hardware designs. Functional partitioning divides the functionality into 
non divisible pieces called functional objects. The advantages of this are: easier 
size/performance tradeoffs, smaller no of objects, possibility of both the hardware and 
software solutions.  

 
Basic partitioning algorithms are: random mapping, hierarchical clustering, multistage 

clustering, group migration, ratio cut, Kerninghan-lin algorithm, simulated annealing, genetic 
evolution, integer linear programming. Hardware software partitioning algorithms generally 
used are: greedy algorithms, hill-climbing algorithms, binary constraint search (BCS) 
HW/SW partitioning, energy-conscious HW/SW partitioning, preference-driven hierarchical 
HW/SW partitioning, simulated annealing, tabu search etc. 

 
In hardware/software partitioning both tasks and hardware modules can have 

different granularities. Coarse granularity means the tasks or hardware modules contain large 
amounts of behavioral or functional specifications while finer-granularity means tasks or 
hardware modules contain smaller amounts. A number of papers have dealt with the 
partitioning problem. They differ by the levels of abstractions, the target architecture, and/or 
the search algorithms used, but these approaches all presume a fixed granularity of tasks and 
hardware modules. This presumption might be sufficient whenever the behavior of a system 
and the functionality of the hardware objects are relatively simple, but for a large-scale, real-
time embedded system, far more detail is typically required. These specifications are not easy 
to be satisfied when partitioning is performed at a coarse grain level. Conversely, with finer-
grain partitioning, the cost to solve the partitioning problem increases exponentially with the 
number of tasks and hardware modules. Therefore it is believed that a mixed granularity 
representation provides a reasonable compromise. 

 
Generally, hierarchical approaches are well-suited for complicated problems because 

complex systems can be hierarchically decomposed into a set of simpler systems, which is 
easier to deal with. Researchers have adopted hierarchy for hardware/software partitioning 
problems in a variety of ways. However, the hierarchal structure in the embedded system can 
be exploited more efficiently and aggressively. In this paper, we give a brief idea of the 
simulated annealing algorithm, tabu (forbidden) search algorithm, energy-conscious 
HW/SW-partitioning and a detailed discussion on the hierarchical evolutionary approach. 
The hierarchical evolutionary approach incorporates hierarchical structures for both tasks 
and hardware modules. We employ an evolutionary algorithm (EA) to efficiently handle the 
hierarchical tasks and hardware modules. In the hierarchical approach, the search space is 
maintained as small as possible. Partitioning always starts from a coarse level and switches to 
a finer level only when it becomes difficult to find a satisfactory solution. The key to our 
partitioning algorithm is to search for the optimized solution by partitioning objects with 
dynamically determined granularity. 

 



 Another challenge in solving the hardware/software partition problem is how to 
effectively and efficiently rank solutions which often have conflicting design criteria. For 
example, minimizing power consumption frequently requires a reduction in clock speed. The 
weighted-sum approach is intuitive and easily implemented, but the selection of precise 
weights is not always straightforward. Another method, the Pareto optimal ranking, is based 
on the assumption that all Pareto optimal solutions are equally preferable—a situation that 
does not hold in many real world applications. The Imprecisely Specified Multiple Attribute Utility 
Theory (ISMAUT) combines the advantages of both a weighted-sum method and a Pareto 
optimal ranking algorithm. With ISMAUT, comparison of two alternative designs can be 
directed by the preference of the designer. However, the bottleneck in comparing solutions 
by ISMAUT is that many instances of linear programming problems need to be solved. This 
added complexity weakens the efficiency of ISMAUT. We present an approach that avoids 
solving linear programming problems and hence greatly improve the efficiency of ISMAUT. 

 
Simulated Annealing Algorithm 

 
This is an iterative improvement algorithms based on neighborhood search are 

widely used for hardware/software partitioning. To avoid being trapped in a local minimum 
heuristics are implemented which are very often based on simulated annealing. Simulated 
annealing selects the neighboring solution randomly and always accepts an improved 
solution.  It also accepts worse solutions with a certain probability that depends on the 
deterioration of the cost function and on a control parameter called temperature.  Simulated 
annealing algorithms can be quickly implemented and are widely applicable to many different 
problems. But it has some limitations such as long execution time and large amount of 
experiments needed to tune the algorithm. In Figure 3 we give a short description of the 
algorithm. With x we denote one solution consisting of the two sets Hw and Sw. xnow 
represents the current solution and N(xnow ) denotes the neighborhood of x now in the 
solution space. 

 
Fig. 3. Simulated annealing algorithm 

 



A problem specific component of the SA algorithm is the generation of a new 
solution x´ starting from the current one x now . We implemented two strategies for solution 
generation: the simple move and the improved move. For the simple move a node is randomly 
selected for being moved to the other partition. The configuration resulted after this move 
becomes the candidate solution x´. Random node selection is repeated if transfer of the 
selected node violates some design constraints. The improved move accelerates convergence by 
moving together with the randomly selected node also some of its direct neighbors (nodes 
which are in the same partition and are directly connected to it). A direct neighbor is moved 
together with the selected node if this movement improves the cost function and does not 
violate any constraint. This strategy stimulates transfer of connected node groups instead of 
individual nodes. Experiments revealed a negative side effect of this strategy: the repeated 
move of the same or similar node groups from one partition to the other, which resulted in a 
reduction of the spectrum of visited solutions. To produce an optimal exploration of the 
solution space we combined movement of node groups with that of individual nodes: nodes 
are moved in groups with a certain probability p. After analysis of experimental results the 
value for p was fixed at 0.75. In Figure 4 we present the algorithm for generation of a 
candidate solution according to the improved move. 
 

 Fig. 4. Generation of a new solution with improved move 
 
Tabu Search Algorithm 
 

Tabu search controls uphill moves not purely randomly but in an intelligent way. The 
tabu search approach accepts uphill moves and stimulates convergence toward a global 
optimum by creating and exploiting data structures to take advantage of the search history at 
selection of the next move. Two key elements of the TS algorithm are the data structures 
called short and long term memory.  Short term memory stores information relative to the 
most recent history of the search. It is used in order to avoid cycling that could occur if a 
certain move returns to a recently visited solution.  Long term memory, on the other side, 
stores  information on the global evolution of the algorithm. These are typically frequency 
measures relative to the occurrence of a certain event.  They can be applied to perform 
diversification which is meant to improve exploration of the solution space by broadening the 
spectrum of visited solutions. 



 
Fig. 5. Tabu search algorithm 

 
In Figure 5 we give a brief description of the TS algorithm.  In a first attempt an 

improving move is tried. If no such move exists (or it is tabu and not aspirated) frequency 
based penalties are applied to the cost function and the best possible non tabu move is 
performed; this move can be an uphill step. Finally, in a last attempt, the move which is 
closest to leave the tabu state is executed. We consider as a candidate solution xk the 
configuration obtained from xnow by moving node k from its current partition to the other 
one, if this movement does not violate any constraints. In the tabu list we store the list of the 
reverse moves of the last τ moves performed, which are considered as being forbidden 
(tabu). The size τ of this list (the tabu tenure) is an essential parameter of the algorithm. In 
Table 1 we present the optimal values for τ as resulted from the experiments. 
  

The total number of iterations performed for partitioning is influenced by 
parameters Nr_f_b (number of iterations without improvement of the solution after which 
the system is considered frozen) and Nr_r (number of restarts with a new initial 
configuration). The minimal values needed for an optimal partitioning of all graphs of the 
respective dimension and the resulted CPU times are presented in Table 1. The times have 
been computed as the average of the partitioning time for all graphs of the given dimension. 
It is interesting to mention that restarting tours were necessary only for the 400 nodes 
graphs. 
 



    TABLE 1 
 
Energy-Conscious HW/SW Partitioning: 
 

Energy dissipation is a hot topic in the design of – especially mobile - embedded 
systems. This is because applications like digital video cameras, cellular phones etc. draw 
their current from batteries that spend a limited amount of energy only. we show that 
energy-conscious HW/SW partitioning can lead to drastic reductions of energy dissipation 
of a whole embedded system. The obtained results show energy savings up 59% while the 
performance remains approximately the same or becomes even slightly higher. As a main 
result, energy-conscious HW/SW-partitioning is a promising method to be deployed in 
addition to classical energy and/or power reduction methods. 
 
Preference driven Hierarchical Approach 
 
Hierarchical Models And the Approach 
 

The behavior of an embedded system is usually represented by a task graph. A task 
graph is a directed acyclic graph in which each node represents a task and each edge 
represents the data dependency between the tasks. As pointed out in the introduction, it is 
often desirable to allow a hierarchical representation of tasks. That is, a complex task may 
consist of several simple tasks, and a simple task can contain some even simpler tasks. To 
facilitate such a system composition, we adopt a multiple granularity representation, called a 
hierarchical task graph (HTG).  

 

Figure 6. Hierarchical task graphs 



 
An HTG is a task graph which contains three kinds of nodes: simple nodes, complex 

nodes and dummy nodes. A simple node is a node representing a task containing no sub-
tasks. The task represented by a complex node can be decomposed to several sub-tasks, 
which can be expressed in more detail by another lower level HTGs, i.e. sub-HTGs. The 
third kind of nodes are dummy nodes, which exist in sub-HTGs. A dummy node represents 
only the input and output relation with other HTGs and is not associated with any 
computational task. The behavior of a system as well as its hierarchical structure can be 
represented by a set of HTGs. Figure 1 depicts an HTG example. In Figure 6,Go is the 
highest level HTG representing a system with one simple task (corresponding to V1) and 
two complex tasks (corresponding to V2 and V3). The two complex tasks are represented 
further by sub-HTGs G1, G2, andG3. Specifically in G2, V32 is a simple node, V31 is a 
complex node, Vd3 and is a dummy node.  

 
Though an HTG is a convenient representation to capture the intrinsic hierarchical 

structure of the functionality for an embedded system, it does not represent a complete system 
behavior at different hierarchical levels (except for the highest one). In order to clearly 
differentiate behavior models of a complete system at various level of hierarchy, the concept 
of HTG instance has been introduced. An HTG instance is a task graph that combines 
appropriate HTGs in different levels to describe the behavior of the whole system. For 
example, in Figure 6, by replacing the complex nodes V2 and V3 in HTG G0 with their sub-
HTGs, G1 and G2, we can construct a new task graph shown in Figure 7(a). The task graph 
in Figure 7(a) describes the same system behavior as HTG G0 in Figure 1 but in more detail. 
The task graph in Figure 7(b) is another instance which is constructed from G0, G1, G2 and 
G3. Given the set of HTGs for a system, by expanding different complex nodes, we can 
construct different HTG instances with different granularities. 
 

 
Figure 7. Hierarchical Task Graph instances 

 
We consider hardware objects to be individual chips, IP components, or functional 

components such as processors, ASICs, and programmable devices. A hardware module is an 
instance of a hardware object. We adopt a hierarchical representation for hardware modules 
in a similar way as that for the system behavioral specification. Such a hierarchical structure 



for hardware objects is quite natural. For example, a coarse-grain hardware may represent a 
chip which contains a CPU core and peripheral circuitry. The peripheral circuitry, in turn, 
consists of modules at an even lower level such as timing circuits, A/D and D/A converters 
and so on. Such hierarchical information can be readily captured by the tree representation.  

 
We consider the following hardware/software partitioning problem: given (1) a set 

of HTGs, which describe the behavior of an embedded system, (2) hierarchical hardware 
modules, (3) communication links, (4) constraints on cost, power, timing, etc., and (5) a 
designer’s preference for certain attributes, find an assignment of task nodes of one HTG 
instance to some hardware modules in a way that optimizes all design attributes while 
satisfying all design constraints. Considering the NP-hard nature of the partitioning problem, 
we use an evolutionary algorithm (EA) to search for high quality solutions. EAs been widely 
used in a wide variety of optimization problems. EAs work well for solving the non-
hierarchical partitioning problem for embedded system. If the system task specifications as 
well as hardware modules contain hierarchical structures, simply employing an EA—or any 
other type of search algorithm—may not lead to an efficient search process. Either the 
computational overhead may prove to be too costly or one has to settle for an inferior 
solution. Nonetheless, EAs are well suited for solving partitioning problems. 

 
Hierarchical Evolutionary Algorithm 

 
In order to utilize the hierarchical structure for efficient exploration of the design 

space, we propose a hierarchical-structure based EA. In virtually all implementations of EAs, 
the size of a genotype i.e., the data structure which encodes a solution—is fixed a priori. 
Unfortunately, a fixed size genotype cannot readily handle the hierarchical structure in the 
partitioning problem because both simple and complex nodes must be accommodated. 
Moreover, the reproduction operators must likewise be dynamically changed as the genotype 
size changes. We refer to such an EA as hierarchical EA (HEA). In the following, we discuss 
in more detail the data structure and reproduction strategy in a HEA. 
 
Data Structure 

 
In hardware/software partitioning problem, for a non-hierarchical task graph, each 

node is to be assigned to a hardware module. In EA, such a node-hardware tuple becomes a 
gene in an individual. However, for the hierarchical task graph, how to encode genes needs 
some careful consideration. A simple approach is to associate each element with a finest 
level task node. This approach maintains the same number of elements in all individuals but 
diminishes the advantage of the hierarchical representation. Another intuitive approach is to 
associate each element with either a complex or simple node in HTGs. The problem with 
this approach is that a basic task may be represented implicitly more than once. 

 
 Additional effort would be required during the construction of solutions to avoid 

any undesirable conflicts for this approach. Recall that an HTG instance itself is a task graph 
that represents the complete system behavior. Hence, we construct individuals from the 
HTG instances instead of HTGs. Each individual is related to one HTG instance of the 
given HTGs, and each gene in the individual corresponds to a node in the HTG instance. 
Note that no task is represented more than once in an HTG instance. This guarantees the 
correctness when constructing the individual. We use the notation (Vi;Mk) to denote task Vi 



is assigned to (hardware) module Mk. Then a gene list for the instance in Figure 2(a) might be 
{(V1,M1) (V21,M2) (V22,M3) (V31,M4) (V32,M5) } and {(V1,M1’) (V21,M2) (V22,M3’) (V31a,M4’) 
(V31b,M5’) (V31c,M6’) (V31d,M7’) (V32,M8’) } for Figure 2(b). Note that this notation naturally 
reflects different granularity levels, which is necessary because distinct individuals may have 
different sizes.  

 
In a HEA the nodes are assigned in a unique order and the genes are listed by the 

order of their corresponding nodes. However, in HEA the order is defined in each HTG. 
Sub-node inherits the order of its parent. Specifically, given two nodes u and v in the same 
HTG (neither u nor v is a parents of the other), assume that u precedes v according to the 
given order. We denote this by O(u) → O(v). Suppose that u is a complex node, then the 
nodes in the corresponding sub-task graphs G(u) = (Vu, Eu) must satisfy  O(x) → O(v), x 
belongs to Vu. Later on, we will show the importance that order plays in maintaining the 
consistency of tasks and modules when complex nodes are expanded. 
 
Reproduction 

 
In a HEA, the reproduction process stochastically creates new (offspring) solutions 

from existing (parent) solutions. Because the size of the gene lists changes dynamically in 
HEA, careful design of reproduction operators is critical to achieve efficient design space 
exploration. In HEA, both mutation and crossover are designed to generate individuals with 
different granularities as well as same granularity.  

 
Mutation generates new species by updating one gene of an individual. There are two 

ways this can be done: change the hardware module to which the task is assigned in the gene 
or, if the node is complex, replace the gene with the genes associated with the sub-node set 
of the complex node. The advantage of HEA is that evolution can be first performed at 
coarse grain level, which explores only a relatively small search space. Only when it seems to 
be difficult to satisfy the constraints of the system, there is a need for exploring alternatives 
at the finer levels (a larger search space). Thus the search space is maintained as small as 
possible to improve the search effectiveness and efficiency. 

 
 The replacement of a complex node with its sub-node set is done with probability 

Θ, and the mapping of Vi to another randomly selected hardware module is done with 
probability 1 - Θ. The value of Θ increases with the number of generations (iterations) 
during which the individual with the highest fitness value (solution quality) has not been 
improved. Intuitively, the value of Θ is larger at higher levels in the hierarchy because the 
search space at the higher level is much smaller. We use the following formula to calculate Θ 
in our system,  

where g is the generations when the highest fitness value has not been improved, Ns 
is the total number of simple nodes in the finest level of HTG, Ni is the number of the 
nodes in the current HTG instance, and k is a constant defined by the user. Consider the 



example in Figure 2(a). We have Ns =8 and Ni = 5. Let k = 0.1, then if the best solution has 
not been improved after 5 generations, we have Θ =0.40. 

 

                        Figure 8. Crossover in HEA 
 
The crossover points must be chosen with care because the parent individuals may 

potentially have different granularities. Specifically, it is very important to guarantee that the 
newly created individuals are valid solutions. As shown in Figure 8(a), when two gene lists 
are sliced along the crossover point, the parts on the same side of crossover point are 
associated with the same fuctionality, which makes such a crossover point valid. Otherwise, 
as shown in Figure 8(b), simply exchanging the subset of genes of both parents would 
generate invalid individuals. To overcome this problem, we need to adjust the position of 
crossover point such that the cross line can cut along the “boundary” of higher level task in 
both individuals. Note that the data structure for the individuals maintains a total order for 
tasks as defined earlier. Therefore, finding the correct position for the new crossover point 
simply requires linear scanning the genes lists. After the correct crossover point is identified, 
we can swap the two subsets of two parents to obtain two new offsprings. 

 
There are several other issues needed more considerations in HEA, such as hardware 

module consistency (a complex module may appear in the same solution with its sub-
modules), attribute calculation, scheduling, and so on.  

 
Preference Driven Ranking 

 
When solving the partitioning problem, how to handle the multiple, often conflicting 

design objectives is not easy. ISMAUT offers an efficient way to compare alternative design 
according to the designer’s preferences. For completeness, we briefly review the ISMAUT 
approach. ISMAUT uses a linear weighted-sum format to capture the fitness of a design 
alternative. Let the fitness of a design x be represented by Vx, and denote the kth of x 
attribute by ak(x),then 



 
where vk(.) maps the raw attribute values to set [0,1] and wk is the corresponding weight. A 
bigger value of Vx indicates a more desirable design alternative. Vx is imprecisely defined in 
the sense that each wk does not have a specific value, but is constrained by the designer’s 
preferences as follows. 

 
The designer’s preferences are indications of which attributes are considered to be 

more important and which designs are considered to be more desirable. Let x, x’ be two 
individuals with attribute ak(x) and a’k(x), k = 1,2,...., n. Suppose that according to the 
designer preference, x is considered to be preferable to x’, denoted by x > x’. We can derive 
one constraint for W as: 

 
When more than one pair of design alternatives are ranked by the designer, a set of 

such constraints are defined which confines W = (w1,w2,......,wn) to a subspace of Wn. With 
these constraints, any two design alternatives, i.e. y and y’ can be compared by solving the 
following two linear programming problems, 
 

 
If  µ >0 (or µ’> 0 ), then x’ > x (or x > x’ ). If µ <0 and µ’< 0,then x’ and x are indifferent 
(x’ ∼ x), i.e., no one is clearly better than the other. Notice that a large number of linear 
programming instances must be solved in order to rank many design solutions which is very 
time consuming when a large number of individuals need to be compared in many 
generations in EA. 

 
 However, once the designer’s preferences have been given, the constraint space Wn 

is fixed. This makes it possible to avoid solving the linear programming problems one by 
one. In fact, the minimum values of the objective function for the linear programming 
problems are always attained at one of the extreme points defined by the set of constraint. 



Solving the linear programming problems can therefore be transformed to check the 
objective function values at each of these extreme points. 
 
 

 
Table 2. Efficient Extreme Points 

 
To find the extreme points from the given designer’s preference, we make use of a 

software package called ADBASE. Each extreme point in our case corresponds to a vector 
in Wn . A pair of indifferent individuals, x and y, can thus be compared by evaluating the 
following values with respect to the extreme point set. 
 

One concern about using this approach is that the number of the extreme points 
grows rapidly with the dimension of Wn, and the number of preference constraints. 
However, this approach is still more efficient than that of directly solving linear 
programming problems. Table 1 illustrates the relationship between constraints and 
dimension. Consider the case of a design alternative with 10 attributes and 20 preference 
constraints. Referring to Table 2, we have at most 28 extreme points. Let te be the amount of 
time needed to calculate the extreme points with ADBASE, and t0 be the time to compute 
the fitness value at each extreme point (which is the amount of time for performing 10 
multiplications and 9 additions), and t1 be the amount of time for comparing two fitness 
values. Then in the worse case, the total amount of time TA needed to rank 100 individuals 
in 100 generations can be obtained by  

 
TA = te + 100 x (100 x 28 x t0 + (100 x 99/2) x t1)  
 

If the ISMAUT approach is used for the above example, in the worse case, the total amount 
of time TLP would be  
 

TLP = 100 x (100 x 99 x tLP ) 
 
where tLP is the amount of time required to solve a linear programming problem with 

10 variables and 20 constraints. In most cases, te ≈ tLP , tLP >> t0, and tLP >> t1, so TLP >> 
TA. Our experimental results also agree with this conclusion. 
 



Future possibilities 
 
1. Many systems exhibit a high degree of regularity (regularity means many of the behaviors 
      in the system are identical, differing only in the data on which they operate). Future 
      algorithms should include techniques to partition regular and semi-regular behaviors  
     such as feedback the metrics to the system and partition again.  
 
2. Since partitioning is a quite mature field, the majority of future tasks will involve  
      adaptation of existing techniques for applicability at the functional level.  
 
3. Develop an algorithm which partition at multiple levels of granularity.  
 
4.  Combine functional partitioning with high-level synthesis.  

 
Conclusion 
 

In this paper, we discussed various issues related to HW/SW portitioning and 
presented several techniques to improve the hardware/software partitioning process for 
large, complex embedded systems. We described the use of both hierarchical task 
specification and hardware modules. To facilitate the partitioning process, the existing EA 
approach was extended so that it can effectively handle hierarchical structures. To further 
improve the efficiency of the preference-driven hardware/software partitioning process, we 
use the idea of employing the extreme points in multi-objective linear programming to 
eliminate the time-consuming procedure of solving multiple linear-programming problem 
instances.  
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