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ABSTRACT 
In this we describe the Global Variable Localization and Transformation for 

Hardware Synthesis from High-Level Programming Language Description. And also the 
synthesis of hardware from object oriented specifications is presented. This approach 

utilizes the e language that has been proven to be highly efficient for the verification of 

hardware. The e language is similar to Java and provides additional constructs for 
specification and verification of hardware. We describe an automated design flow for the 
synthesis of object oriented descriptions that tightly integrates simulation based 
verification. 
 
INTRODUCTION: 

There is a growing gap between the number of gates that can be implemented on a 
single chip and the number of gates that can be designed by one person in one day. 
Additionally, short product life cycles, time to market, and changing standards require 
shorter design times. Therefore, new design methodologies must be applied. By 
specifying on a higher level of abstraction the productivity can be increased enormously. 
Commercial tools for synthesizing algorithmic descriptions are available already and gain 
more and more acceptance. Newer approaches raise the abstraction level even more by 
synthesizing object oriented descriptions. The object oriented paradigm can be applied in 
order to cope with the complexity of system-level designs.  

System architects and system level designers typically use a C/C++ based 
development environment to specify and analyze the systems they are designing. Once 
the exact system behavior has been fixed, they hand-off the executable specification of 
the system to hardware designers and software developers. The hardware designer then 
translates the executable specification written in C/C++ into a hardware description 
language (HDL) and continues adding more detail until the HDL code can be synthesized 
into a gate-level netlist for IC implementation. One of the problems with this 
methodology is that rewriting the C/C++ code into an equivalent HDL description is both 
time consuming and error prone. It usually includes rewriting the original testbenches 
written in C/C++ into an HDL, which greatly adds to the task. In addition, each time a 
trade-off that might affect the overall behavior of the system is tried during the hardware 
design process, the different alternatives must be analyzed in the context of the C/C++ 
executable specification, and this requires the repeated involvement of the system 
architect or system level designer. 

What’s needed is a smooth and reliable methodology that allows the hardware 
designer to continue refining the C/C++ executable specification created by the system 
architect or system level designer into a form that is acceptable as input for hardware 
synthesis, without the need to translate the C/C++ code into an HDL. Eliminating the 
translation step enables the reuse of the original C/C++ testbench, decreases verification 
time and ensures compliance with the original specification. 
CoCentric SystemC Compiler is the synthesis bridge between the system architect 
modeling and verifying SoC designs in C/C++ and hardware designers implementing 
those designs in silicon. 
 

Using SystemC Compiler, hardware designers can implement SystemC code from 
a behavioral level of abstraction, which provides for quick and efficient modeling, small 



code size, fast simulation/verification and the benefits of optimization at the architectural 
level, which can be far greater than those available at the RT-level. 

Since hardware description languages like VHDL and Verilog are more suitable 
for RT level design than for higher levels of abstraction, software languages like C/C++ 
or Java are recently deployed for synthesis. These languages are already widely used for 
specifications that can be executed. Furthermore, hardware/software co-design can be 
simplified by using a single language for both domains.Verification typically consumes 
over half of the design effort. The languages currently used for synthesis provide only 
insuffi- cient support for verification. Therefore languages like Verisity’s e 
(www.verisity.com) or Synopsys’ Vera (www. open-vera.com) hardware verification 
language are deployed within a dedicated environment to improve the verification task. 
The elanguage is similar to Java enhanced by various verification and hardware related 
constructs. e provides all basic object oriented constructs, supports multi-threading, and it 
can be executed in the SpecmanTM environment. Therefore it is also well suited for 
specification. Synthesis on the system-level requires support for multi-threaded 
descriptions. Due to the complexity of such designs, we want to support verification 
appropriately in our approach. The powerful verification features of eand its capability 
for object oriented specification, encouraged us to investigate the applicability of the e 
language for synthesis. By making the synthesis of edescriptions possible, we allow to 
use one single language for specification, verification, and synthesis. 
The remainder of the paper is organized as follows: In Section 2, we will present an 
overview of related work. Section 3 describes object oriented synthesis and details of the 
synthesis from e descriptions. In Section 4, we present verification within the Specman 
environment and the integration of this environment in our design flow. Section 5 
presents examples and discusses the results. Section 6 concludes this paper and gives an 
outlook on further work. 
 
2. PREVIOUSWORK 

In the past, various approaches have been made to specify hardware and 
hardware/software systems on the basis of objects. Object oriented VHDL enhances 
VHDL with object oriented concepts. SystemC is based on C++ class libraries and is 
intended for design at the system/algorithmic and register-transfer levels. Recently, 
successful efforts have been made to specify and to synthesize from Java. For validation, 
simulation and formal verification have a long tradition and various commercial tools are 
provided by major EDA companies, e. g., Cadence, Mentor Graphics, and Synopsys. 
 
3. OBJECT ORIENTED SYNTHESIS 

The object oriented design paradigm has already gained broad acceptance in 
software engineering for the design of large systems. Object oriented synthesis allows 
hardware modeling on an abstraction level above the behavioral level. Designers can 
express their ideas in a very natural way by thinking of classes rather than of data and 
procedures. Encapsulating things that belong together andhaving data and behavior 
within one entity also simplifies re-use. 
We developed an object oriented analysis system (OOAS) that allows to synthesize 
object oriented hardware descriptions. Our OOAS can be used to read in descriptions 



written in different languages. Currently we support Java, SystemC, and eas input 
languages.  In this paper we describe the synthesis from e. 
There is already a variety of good synthesis tools on the market. These tools provide an 
automated design flow for RT and algorithmic descriptions, but they do not support 
object oriented concepts like object references, inheritance, or polymorphism. We utilize 
the algorithms deployed by these tools for the synthesis of object oriented descriptions by 
transforming such descriptions into equivalent descriptions on a lower level of 
abstraction that can be handled by commercial tools. The formats that we generate for 
those descriptions are VHDL, Verilog, and SystemC (figure 1). For the sake of simplicity 
this paper refers only to the output of Verilog. 
3.1 Synthesis from e 

Using one single object oriented language for specification, verification, and 
synthesis simplifies the design process. There is a variety of languages that could be used 
as such an unified language, each of them having advantages and disadvantages. Most of 
the languages do not support verification adequately. Verification of multi-threaded 
descriptions is mandatory for hardware design and particularly challenging. The e 
language is therefore especially suited as an unified language for hardware design. Today 
eis not only used for verifying hardware descriptions written in VHDL or Verilog, it is 
already used for writing a golden model of the hardware in an object oriented high-level 
language. This model is then manually translated into a synthesizable HDL description. 
The advantage of e over software languages like C/C++ or Java is that hardware related 
constructs like bit accurate data types, clocks, etc. are part of the language. 
For the transformation from an object oriented description in e into an equivalent 
description in Verilog, the meta data that describe the object oriented structure is 
generated. The number and structure of objects have to be static in the realization in 
hardware. This should be considered in the description and is checked by preallocation 
during the analysis. Objects have to be allocated for variables and parameters of methods 
which reference sets of objects. The identification of such sets of static references is done 
during an alias analysis, which is part of the OOAS. 
In e concurrent threads of control are described by so called Time Consuming Methods 
(TCMs). TCMs are similar to Threads in Java. TCMs are triggered by events. Events can 
be defined by temporal expressions that are part of the elanguage. TCMs have to be 
handled separately from the regular methods (non-TCMs) during the transformation   



process. Conflicts resulting from concurrent access to variables by different TCMs must 
be detected by a concurrency analysis and then be resolved. We now describe the control 
data flow analysis that is performed for the sequential case and the concurrency analysis 
that is performed for the parallel case. 
3.2 Control Data Flow Analysis 

The control data flow analysis applies techniques known from software compiler 
design [9] to the synthesis of hardware. After the lexical and semantical analysis done by 
the scanner and parser for e, a static control and data flow analysis is performed on the set 
of syntax trees for each eobject. The result of the analysis is a control flow graph (CFG) 
where the data flow information is stored in a scope table within each node of the graph. 
Because of the combination of data and control flow information, no separate data flow 
graph has to be generated and the analysis traverses the syntax tree only once. The CFG 
has two different types of nodes. The control flow nodes divide the CFG in multiple sub-
trees if a node has multiple children. This is the case for nodes representing, e.g., while 
loops or if statements. The second type of nodes in the CFG are the data flow nodes, 
which do not change the control flow, like arithmetic operations or assignments. 
The main problem of the transformation is the usage of references. Deciding which object 
is accessed when a method is called on a variable can only be done at runtime. Objects 
may have several references, or aliases at the same time, so it is hard to tell which 
statements affect which object. The analysis determines a set of possible objects for each 
variable within the scope of a statement. Each node of the CFG has one scope table, 
where all variables in the scope of the node are stored together with a set of objects that 
may be referenced by this variable. The scope tables are built together with the whole 
CFG. When a new node is created, the scope table of the parent node is cloned and the set 
of references (‘reference set’) of each variable changed by the statement is updated. 
A reference set Rs(a) is the maximal set of all references on objects, which can be 
hidden by the alias a after the execution of statement s under consideration of the type of 
the variable and the preceding control flow. All reference sets Rs(a) of variables 
accessible in a CFG node n, build the scope table S(n). Figure 2 shows an example of a 
hardware component written in e. Classes are described using the keyword struct. A 
struct declares data fields and methods. Inheritance is supported by the keyword like. The 



init method is similar to the constructor in Java. Instances of a struct are made by using 
the keyword new. A detailed description of the elanguage can be found in [10]. The 
constructs that we use for the specification of hardware components are described in [11]. 
The analysis for the TCM runHWO of the example code results in the CFG shown in 
figure 3. At node 5 in the CFG, the scope table includes three reference sets R5(x), R5(y) 
and R5(z). Each reference set has been initialized in the init method, where three objects 
of the struct S have been instantiated. The objects S 1, S 2 and S 3 are labeled with 
subsequent numbers. For each type of statement, a different algorithm is implemented to 
update the scope table of a node in the CFG. The algorithm for loop statements, used for 
the determination of the scope table for node number 7 in figure 3 is described in 
algorithm1. Table 1 shows the evolution of the reference sets for each iteration of the 
algorithm. The body of the while loop has to be reanalyzed four times to get the final 
reference sets for the while loop node (without determining the exact number of iterations 
during execution). The analysis terminates because there are no changes in the reference 
sets of step three and four. The merged reference sets in the last column of table 1 are the 
resulting sets contained in the scope table S(7) of node 7. 
 
 
 

 
 
 
 



 
 
 
 
 
 
 

 



 
The scope table S(7) is the input for the analysis of node 12. The method call z.foo() uses 
variable z where R12(z) contains the objects S 3, S 1 and S 2. On which object the 
method foo() will be called depends on how often the while loop has been iterated at 
runtime. The analysis splits the CFG into three sub-trees, one for each object that may be 
referenced by the variable z. 
For each method call, a new node in the CFG is created. The body of the method builds a 
sub-tree of the node. When the method is a TCM, the new CFG node builds an 
independent CFG with the method call node as root node. A copy of the reference sets of 
the actual scope is the initial scope of the new CFG. The analysis always terminates 
because of the constant number of objects in the whole system. The number of objects in 
a reference set can not exceed the maximum number of objects instantiated in the whole 
system. The constant number of objects instantiated in the eprogram is guaranteed since 
the instantiation of objects in loops is only allowed if the number of iterations can be 
determined at compile time. The instantiation of objects is not allowed within cyclic or 
recursive method calls. 
When the analysis terminates, the CFG is used as input for the concurrency analysis, 
which is described in the next section. 
3.3 Concurrency Analysis 

During the concurrency analysis, the reference sets and the CFGs of the data and 
control flow analysis are used for creating a set of variables which are accessed by 
different TCMs. A variable can be accessed by a TCM in two different ways: 
_ write access: The variable is on the left hand side of an assignment and becomes an 
alias for another object. 
_ read access: The variable is on the right hand side of an assignment or is passed to 
another method as parameter or a method is called on the variable. If a node in the CFG 
accesses a variable the following cases have to be handled by the analysis: 
1. There is no other TCM which reads or writes the variable. The variable is a normal 
variable that does not require any special treatment. 
2. At most one TCM has write access to the variable and multiple TCMs have read 
access. This variable has to be declared in a global scope to enable multiple TCMs to 
access the referenced object. 
3. More than one TCM writes to the variable. This case is reported to the user of the 
system. An arbiter to resolve the access must then be inserted. This arbiter is an adapted 
variation of the arbiter described in [12]. 

For the variables which are accessed by multiple TCMs (case 2) the CFG is 
extended by a set of global variables called global. To build up this set, the CFG is 
traversed to build a set of variables read by the TCM t called readt and a set of variables 
written by t, called writet. When a read access occurs in a node of the TCM t, the variable 
v is added to the set readt. If v is in the set writem or readm, where m is an already 
analyzed TCM, v becomes element of global. In case of a write access, v is added to the 
set writet. If v is already element of the set writem an error state is reached. When v is 
member of readm v becomes element of the set global. The actual TCMs are stored on a 
stack because a TCM can start another TCM. The actual TCM where a read or write 
access is executed, is always the top element of a stack called tcmStack. The described 
method that creates the global set of shared variables is shown in algorithm 2. 



 



After the complete concurrency analysis, the set global is added to the root node of the 
CFG. The CFG is traversed by the Verilog code generator that uses the scope information 
to generate the appropriate Verilog constructs. The TCMs that are used in e to specify 
multiple threads of control are transformed into Verilog always blocks. Each always 
block is initially idle and starts its actual execution at the same time as the corresponding 
TCM is started in the especification. In order to obtain this behavior and to ensure a 
correct reset behavior of the circuit, a skeleton is built implicitly around the actual 
description. Within that skeleton, the Verilog statements are generated according to the 
information in the CFG. 

4. VERIFICATIONWITH e AND SPECMAN 
Closely related to e is the verification environment Specman, both developed by 

Verisity Design. Simulation based verification  requires the introduction of stimuli to the 
Device Under Test (DUT) being simulated, as well as the collection of DUT responses 
for the purpose of checking and coverage analysis (figure 4). Specman and the e language 
provide powerful support for these verification tasks. The supported verification 
methodology can be applied to DUTs implemented in e, those implemented in HDLs 
such as Verilog and VHDL as well as numerous other modeling languages. 

We use this verification environment in three different phases of the design 
process depicted in figure 5. First, the design flow starts with the specification of the 
hardware module in e. This system specification may contain algorithmic descriptions as 
well as descriptions at the register-transfer level. The correctness of the specification can 
be verified by executing the ecode in the Specman environment. Second, existing Verilog 



IP can be included for verification by attaching a simulator. The results of this first step 
in the verification process can be used to refine the test bench, also written in e, around 
the hardware module. Third, the especification of the hardware module is processed by 
our object oriented analysis system. Depending on the description style used in the 
specification (algorithmic or register-transfer level) the generated code is either 
behavioral Verilog, suitable for high-level synthesis with Synopsys Behavioral 
CompilerTM/Design CompilerTM, or a Verilog description at the register-transfer level 
that can be synthesized by Design Compiler. Additionally, the OOAS generates Verilog 
code that comprises several enhancements for simulation. The generated Verilog can be 
verified by attaching a simulator the same way as for the simulation of Verilog IP. The 
same environment is used for the verification of the results of the commercial tools. 
All steps of the verification task are supported by Specman’s sophisticated verification 
methodologies and the test bench can be re-used easily.  
4.1 Input Modeling and Generation 
In e, input stimuli are modeled as a hierarchy of objects with inter relating constraints. By 
defining object types the user specifies the universe of data elements or an alphabet for an 
input sequence. Constraints can both remove parts of the alphabet and restrict the 
composition of members of the alphabet into sequences. Constraints may depend on the 
state of the system. 
In contrast to deterministic test inputs, the e input model normally contains degrees of 
freedom. The Specman test generation engine uncovers these degrees of freedom and 
creates input sequences using a controlled pseudo-random process. Constraints are 



conjunctive by nature, hence one can direct the generated input sequence by addition of 
constraints. These additions can be made per feature to be tested, or as a way to avoid 
areas of known defects and work in progress. 
4.2 Driving and Checking 
A directed random input generation methodology requires automated checking, since the 
input model does not predict a unique response. The e language offers three major 
features in support of driving and checking: Events, TCMs, and a complete temporal 
language. The temporal language uses events and state formulae as atomic entities. 
Temporal and logical operators are used for expressing protocol rules the DUT must 
adhere to. Specman features a temporal engine that interprets temporal expressions as 
runtime checkers. 
4.3 Functional Coverage 
The generation process ensures non-zero probability for any legal input sequence. 
However, given the huge input space and state space of modern devices, a practical 
approach would control the distribution of input sequences in view of the accumulated 
coverage. 
The e language provides a way to define functional coverage metrics. Functional 
coverage points are user defined combinations of states, or sequences of states that have 
some architectural or micro-architectural significance. Because of its sequential nature, 
functional coverage is a more rigorous metric than code coverage. The accumulated 
functional coverage and its breakdown to architectural and micro-architectural features 
provide status information about the verification effort. This information is used for 
steering the process and to eventually certify that the DUT has a high probability of being 
functional. 
 
5. CONCLUSIONS AND FUTUREWORK 
Our approach provides an automated design flow for synthesis of object oriented 
specifications. Verification is tightly integrated in the design flow and all the design tasks 
can be carried out using the object oriented language e.  
At present, no extensions have been made to the e language in order to distinguish 
hardware and software objects or to define the interfaces between them. Instead 
inheritance was used to augment object semantics as needed. We consider adding proper 
constructs to the e language to simplify the specification task for the designer. 
So far we have deployed our synthesis system to improve and speed up the 
implementation flow. When applied to the verification flow, some components of the test 
environment may be subject to synthesis which may facilitate test bench acceleration and 
post silicon validation. 
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ABSTRACT 
In this we present a synthesis tool aimed for application specific DSP processors. 

The purpose with the presented work has been to develop a tool where it is easy for a 
designer to try different approaches in order to achieve a well balanced architecture. In 
this we discuss the algorithms in the tool and show, by example, the intended way of 
operation. 

 
1. INTRODUCTION 

DSP processing in modern communication systems are today normally carried out 
either in programmable DSP processors or dedicated ASICs with little or no  
programmability. An ASIC solution offer high performance in terms of processing power 
and power consumption. The ASIC is targeted against one or a few tasks and can 
therefore be optimized to meet the desired computational requirements and memory 
bandwidth etc. We focus on applications that require a high degree of flexibility, but for a 
given application. Examples of applications include FFT processing, Viterbi and Reed-
Solomon decoding. Each one of these examples exist in various variants, working with 
different block sizes etc. For these applications we want to be able to evaluate various 
instruction sets as well as different degrees of parallelism in a hardware-software co-
design process. Instead of a automatic synthesis tool we need an interactive environment 
that gives the designer the opportunity to describe different architectures in an efficient 
way and then fast get the resulting netlist. In this paper we show a solution that makes it 
possible to synthesize a DSP processor from an executable cycle true, model of a 
processor and the application. This is done using a synthesis tool where most of the 
design choices are done by the designer. 
 

2. SYNTHESIS FRAMEWORK 
The synthesis tool has been designed to fit into the MDSP design flow which is a 

design methodology that allows the designer to use a C-like description language called 
µC for defining the DSP. The synthesis tool takes as input the cycle true µC model and 
gives as output an architecture that is able to execute the algorithms described in the 
model. The program memory image is then created using other tools in the framework. 
The generated architecture is later on passed to a VHDL compiler in order to generate a 
netlist suitable for the layout tool, Figure 1. 
 



 
3. THE DSP SYNTHESIS TOOL 

The synthesis tool takes as input the simulation model written in µC that contains 
all information about the desired instruction set as well as the desired parallelism. What 
not are given in the description is how many and which types of ALUs that are wanted. 
The description also lack explicit information about how the resources should be 
connected together. 

3.1. Target Architecture 
 The DSP synthesis tool has a target architecture consisting of a number of 
ALUs, register files, memories, I/Os, busses, a control unit and a program 
memory, Figure 2. One difference between a general purpose DSP architecture 
and a dedicated one is how registers are used. A general purpose DSP have 
large register banks with general purpose register files and ALUs that can be 
used for everything from addressing to normal data processing. In a dedicated 
architecture it is possible to have dedicated registers and ALUs for addressing 
and different types of data. Therefore we have chosen to target an architecture 
with dedicated resources for different types of tasks in the DSP.  

3.2. Synthesis Library 
The synthesis tool maps the µC description to structural VHDL containing 

primitives found in a synthesis library. The library consists of registers, memories, 

various types of I/O blocks and arithmetic logic units (ALU). The I/Os are either plain 
registers, an asynchronous port that communicates using handshaking, or user defined 
I/O. The RAM have separate read and write buses which is common in many on-chip 
RAMs. There is also a control unit available in the library that support a set of 
instructions such as for instance jump, conditional jump and sequential execution. All 
control signals needed in the datapath is taken directly from the control unit. The 
instruction decoding is supposed to be made inside the control unit and is not done by the 
synthesis tool. Any kind of functional block can easily be included in the synthesis 
library by describing the block in VHDL and adding a description where the supported 
instructions are listed. 

 



3.3. Synthesis 
The synthesis process is divided into a number of stages that analyze the resource 

need and then creates an architecture that is matched against the algorithms to implement. 
In the first stage the µC model is analyzed to find out which hardware that are explicitly 
declared, i.e. all memory and registers. Secondly, the tools analyze which operations that 
are made in the program flow. The target and destination registers for each instruction is 
also stored. In the third stage the operations are mapped to ALUs. This can basically be 
done in two ways realizing either a minimal architecture with as few ALUs as possible, 
or a maximal architecture where little or no resource sharing is made. A minimal 
architecture will require ALUs supporting many instructions, while a maximal 
architecture gives many, but simple ALUs. This tool creates an architecture where each 
destination register in the architecture gets a dedicated ALU. The ALU is chosen from 
the synthesis library by finding the ALU that supports all operations that has the given 
register as target register. Hence, the resulting architecture will be an architecture with 
one ALU attached to each register. In order to optimize the architecture the number of 
ALUs must be reduced. Typically, each ALU should have a number of registers attached 
to it, i.e. a register file. Therefore it is possible to define register files, telling the synthesis 
tool to attach the same ALU to each register in the register file, Figure 3. Normally the 
selected ALU is the ALU that most closely matches the needed instruction set, however it 
is also possible to control the tool such as the most power or area efficient or even as test 
ALU is chosen. This is accomplished by storing relative power, area and speed weights in 
the synthesis library. Finally the interconnections are created by analyzing the model in 
order to see which blocks that has to be able to communicate. Only 
necessary communication paths are created. The communication paths only contains 
multiplexers and wires, i.e. no tri-state buses are used. 

3.4. User Control 
The degree of inter activity during the design process is intended to be high. The 

main goal has been to provide a tool that makes it easy for the designer to get the 
intended architecture. Therefore the tool contains little inherent intelligence, but is easy to 



control by flags fed to the synthesis tool, by modifying the synthesis library and/or 
rewriting the model. The type of ALUs that are chosen for a given register may not 
become the one the designer wants to have. The type of ALU can therefore be explicitly 
assigned using a configuration file as input to the synthesis tool. In this way it is possible 
to add a more powerful ALU that supports more instructions than required by the present 
application.  

4. EXAMPLE 
In this section an example how to use our synthesis tool in the design flow is 

given. In Figure 4 an example of µC code of a 32 tap FIR filter is given. Passing this 
description through the synthesis tool without any ALUs  declared gives the architecture 
shown in Figure 5 (control unit excluded). The tool creates an architecture that can 
execute the given task, and nothing more. In order to achieve an implementation that are 
easier to reuse, for instance if we want to support any filter length up to 32 taps, the 
instruction set has to be extended. This has to be made such as it become possible to 
 

 



 
 
 
 
realize an addressing scheme other than modulo 32. To realize this we may for instance 
include circular buffers for the calculation of data and coefficient addresses. Since a 
circular buffer may be useful in the future we decide to add a circular buffer ALU into 
our synthesis library and then instantiate it into the µC model. In Figure 6 it is shown 
how to change the µC model and what to add to the synthesis library. The new more 
general datapath is shown in Figure 7. 
 
5. FUTURE WORK 

The implemented heuristics with an ALU selection based on target 
registers lead to an architecture that normally works nice for dedicated DSPs. In 
modern general purpose DSPs there is normally a number of parallel ALUs that 
are connected to one  



 
register file. This is an architecture that can not be supported in the present 
version of the synthesis tool. One of the problems with the synthesis of such an 
architecture is that it is difficult to decide which instruction to put in which ALU. In 
order to decide how many ALUs to attach to a register file the parallelism within 
the register file has to be analyzed. The parallel ALU problem can today be 
worked around by explicitly instantiate it into the uC model. But a more smooth 
way making it easier to elaborate with different solutions would be preferred. The 
instruction coding is today put into the control unit, which just is instantiated by 
the synthesis tool. A future extension would be to include an instruction coding 
stage in the tool in order to further reduce the design effort.  

6. CONCLUSIONS 
In this paper we have discussed a synthesis tool where a µC model is translated to 

a DSP processor. The nice thing with the tool is not the optimization routines in the tool 
since they do not contain anything advanced. Instead we have shown a design flow, using 
the synthesis tool, where it become easy for a designer to evaluate different architecture. 
We have, by an example, shown how an FIR filter can be synthesized and redesigned to 
support a wider application without too much work.There are things that can be 
improved, such as the user interface.  

REFERENCE: 
Application driven DSP Hardware Synthesis 
Mikael Karlsson Rudberg1,2 and Mikael Hjelm1 

1) Ericsson Microelectronics AB, 164 81 Kista, SWEDEN 
2) Department of Electrical Engineering, Linköping University, S-581 83 Linköping, 
SWEDEN  Mikael.Rudberg@mic.ericsson.se, Mikael.Hjelm@mic.ericsson.se 
 


