Homework IV

1. You are given a set of intervals, I_{1}, \ldots, I_{k}, where each interval $I_{i}=\left[s_{i}, e_{i}\right]$ has an associated profit p_{i}. Give an efficient algorithm for finding a subset of intervals of maximum total profit satisfying the property that for any time t, there are at most 3 intervals in this subset which contain t.
2. You are given N boxes, where box i has height h_{i}, width w_{i} and length l_{i}. Give an algorithm for finding a stacking of a subset of boxes of maximum total height : box i can be stacked on top of box j if $w_{i}<w_{j}$ and $l_{i}<l_{j}$.
3. You are given a tree T where each vertex v has an associated weight w_{v}. We say that a subset W of vertices in T is nice if no two vertices in W are joined by an edge. Give an algorithm for finding a nice subset of vertices of maximum total weight in T.
