Homework III

1. (a) Suppose we are given two sorted arrays $A[1 \ldots n]$ and $B[1 \ldots n]$ and an integer k. Describe an algorithm to find the $k^{t h}$ smallest element in the union of A and B in $O(\log n)$ time. For example, if $k=1$, your algorithm should return the smallest element of $A \cup B$; if $k=n$, your algorithm should return the median of $A \cup B$.) You can assume that the arrays contain no duplicate elements.
(b) Now suppose we are given three sorted arrays $A[1 \ldots n], B[1 \ldots n]$, and $C[1 \ldots n]$, and an integer k. Describe an algorithm to find the $k^{\text {th }}$ smallest element in $A \cup B \cup C$ in $O(\log n)$ time.
(c) Finally, suppose we are given a two dimensional array $A[1 \ldots m][1 \ldots n]$ in which every row $A[i][]$ is sorted, and an integer k. Describe an algorithm to find the $k^{t h}$ smallest element in A as quickly as possible. How does the running time of your algorithm depend on m ?
2. Let S be a set of n points in the plane. A point p in S is called Pareto-optimal if no other point in S is both above and to the right of p.Describe and analyze an algorithm that computes all the Pareto-optimal points in S in $O(n \log n)$ time.
3. Let $M[1 \ldots n][1 \ldots n]$ be an $n \times n$ matrix in which every row and every column is sorted. Such an array is called totally monotone. No two elements of M are equal.
(a) Describe and analyze an algorithm to solve the following problem in $O(n)$ time: Given indices $i, j, i^{\prime}, j^{\prime}$ as input, compute the number of elements of M smaller than $M[i][j]$ and larger than $M\left[i^{\prime}\right]\left[j^{\prime}\right]$.
(b) Describe and analyze an algorithm to solve the following problem in $O(n)$ time: Given indices $i, j, i^{\prime}, j^{\prime}$ as input, return an element of M chosen uniformly at random from the elements smaller than $M[i][j]$ and larger than $M\left[i^{\prime}\right]\left[j^{\prime}\right]$. Assume the requested range is always non-empty.
(c) Describe and analyze a randomized algorithm to compute the median element of M in $O(n \log n)$ expected time.
