Homework II

1. You are given a line with n points, labeled 1 to n, marked on it. You are also given a set of intervals I_{1}, \ldots, I_{k}, where interval I_{i} is of the form $\left[s_{i}, e_{i}\right], 1 \leq s_{i} \leq e_{i} \leq n$. Find a set of points X of smallest cardinality such that each interval contains at least one point from X.
2. Give an $O(n)$ time algorithm to solve the knapsack problem discussed in the class.
3. You are given two sets X and Y of n positive integers each. You are asked to arrange the elements in each of the sets X and Y in some order. Let x_{i} be the $i^{\text {th }}$ element of X in this order, and define y_{i} similarly. Your goal is to arrange them such that $\Pi_{i=1}^{n} x_{i}^{y_{i}}=x_{1}^{y_{1}} \times x_{2}^{y_{2}} \times \cdots \times x_{n}^{y_{n}}$ is maximized. Give an efficient algorithm to solve this problem. Prove correctness of your algorithm.
