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Abstract—In this paper, we present a method of kernel optimiza-
tion by maximizing a measure of class separability in the empir-
ical feature space, an Euclidean space in which the training data
are embedded in such a way that the geometrical structure of the
data in the feature space is preserved. Employing a data-dependent
kernel, we derive an effective kernel optimization algorithm that
maximizes the class separability of the data in the empirical fea-
ture space. It is shown that there exists a close relationship between
the class separability measure introduced here and the alignment
measure defined recently by Cristianini. Extensive simulations are
carried out which show that the optimized kernel is more adap-
tive to the input data, and leads to a substantial, sometimes signif-
icant, improvement in the performance of various data classifica-
tion algorithms.

Index Terms—Class separability, data classification, empirical
feature space, feature space, kernel machines, kernel optimization.

I. INTRODUCTION

RECENTLY, there has been a lot of interest in kernel-based
learning or kernel machines in areas such as pattern

recognition and machine learning [1]. Basically, kernel ma-
chines work by mapping the input data into a feature space

, , and then building linear algorithms in the
feature space to implement nonlinear counterparts in the input
data space. The map , rather than being given in an explicit
form, is presented implicitly by specifying a kernel function
as the inner product between each pair of points in the feature
space. It is assumed that the mapped data in the feature space
is linearly separable or at least possesses a better linear sepa-
rability than that in the input space. However, the separability
of the data in the feature space could be even worse if an
inappropriate kernel is used. Since the geometrical structure of
the mapped data in the feature space is totally determined by
the kernel matrix, the selection of the kernel has a crucial effect
on the performance of various kernel machines. It is desirable
for the kernel machines to use an optimized kernel function that
adapts well to the input data and the learning tasks.

Given a training data set , ( ), the different
algorithms, such as the support vector machine (SVM) [6], [10],
[16], [22], kernel Fisher discriminant (KFD) [4], [15], [20], and
kernel principal component analysis (KPCA) [23], perform only
in a subspace of the feature space spanned by the images of the
training data, , ( ). This subspace can
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be embedded into an Euclidean space in such a way that all
the geometrical measurements, such as the distance and angle,
between each pair of are preserved. The embedding map
is referred to as the “empirical kernel map” [22]. We shall call
the embedding space the “empirical feature space.” Since the
training data have the same geometrical structure in both the
empirical feature space and the feature space, and the former is
easier to access than the latter, it is easier to study, in the former
space than the latter, the adaptability of a kernel to the input data
and how to improve it.

In the literature, kernel optimization is often considered as a
problem of “model selection,” which is usually tackled by cross
validation. However, cross validation can only select the param-
eters of a kernel function just from a set of prespecified discrete
values of the parameters. Recently, Cristianini et al. [9] and
Lanckrict et al. [14] have for the first time proposed methods
of selecting the kernel or kernel matrix by optimizing the mea-
sure of data separation in the feature space. While the authors
in [9] use the measure called “alignment” to evaluate the adapt-
ability of a kernel to the data, those in [14] employ the margin
or soft margin as the measure of data separation in the feature
space. In this paper, we propose an alternate method to optimize
the kernel function by maximizing a class separability criterion
in the empirical feature space. Employing the data-dependent
kernel model, we develop an effective algorithm to maximize
the class separability measure in the empirical feature space.
The final optimized kernel shows that it is more adaptive to the
data and leads to a substantial improvement in the performance
of the kernel-based data classification.

The paper is organized as follows. Section II shows how to
embed the mapped data in the feature space into an Euclidean
space such that all the geometrical relations are preserved. In
Section III, a measure for the class separability of the data in
the empirical feature space is formulated in term of the kernel
matrices, and then, based on this measure, an optimization
algorithm for the data-dependent kernel is derived. Simulation
studies are carried out using the proposed algorithm, and they
show a substantial improvement in the class separability for
both the training and the test data. In addition, the relationship
between the proposed class separability measure and the align-
ment measure introduced in [9] is discussed. In Section IV,
a number of experiments using real data sets are carried out
to demonstrate the improvement in the performance of the
data classification algorithms after using the optimized kernel.
Section V contains the conclusion.

II. FEATURE SPACE AND EMPIRICAL FEATURE SPACE

Let be a -dimensional training data set,
denote the sample matrix whose rows consist of

( ), and denote the kernel
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matrix of rank, say , that is, , where
. Since is a symmet-

rical positive–semidefinite matrix, can be decomposed as

(1)

where is a diagonal matrix containing only the positive
eigenvalues of in decreasing order, and consists of the
eigenvectors corresponding to the positive eigenvalues. The map
from the input data space to an -dimensional Euclidean space

:

is essentially the empirical kernel map in [22]. We shall call the
embedding space the empirical feature space.

It is easy to verify that the empirical feature space preserves
the geometrical structure of in the feature space. Let
be an matrix which has each for its rows. That is,

. Then, the dot product matrix of in
the empirical feature space can be calculated as

This is exactly the dot product matrix of in the
feature space. Since the distances and angles of the
vectors in the feature space are uniquely deter-
mined by the dot product matrix

, the training data has the
same geometrical structure and, hence, the same class separa-
bility, in both the empirical feature space and the feature space.
An interesting fact is that the empirical kernel map described
previously is exactly the KPCA transform [3] when the kernel
matrix is substituted by the centered kernel matrix

where denotes the matrix with all entries being
equal to unity.

Given the training data set, all the kernel-based algorithms,
such as the SVM, KFD, KPCA, and kernel minimum squared
error (KMSE) [3], perform just in the subspace

, which is isomorphic with the empirical feature space ac-
cording to the previous discussion. From both the theoretical
and practical points of view, it is easier to access the empir-
ical feature space than the feature space. Since the geometrical
structure of the training data in the empirical feature space is the
same as that in the feature space, the former provides a tractable
framework to study the spatial distribution of , to mea-
sure the class separability of , and more importantly,
to optimize the kernel in order to increase the separability and,
hence, improve the performance of the kernel machines.

Before we concentrate on the task of optimizing the kernel
in the empirical feature space, let us get some intuitive feeling
about the embedding of into the empirical feature space
through two examples. For more information about data em-
bedding, one can refer to [17]. Fig. 1(a) shows a two-dimen-
sional (2-D) data set with 320 samples, whose coordinates are
uncorrelated. The samples are separated into two classes, one

containing 150 samples, and the other 170 samples, both being
Gaussian with , , , and
with , , , , respectively. We
see from this figure that there is some overlap between the two
classes. Fig. 1(b) shows the projection of the data in the empir-
ical feature space onto the first two significant dimensions cor-
responding to the first two largest eigenvalues of , when the
polynomial kernel function is used. Fig. 1(c)
gives the corresponding projection when the Gaussian kernel
function with is employed.
From Fig. 1(b), it is seen that in the case of the polynomial kernel

, the class separability is worse in the feature space than
that in the input space, even though it is based on only the 2-D
projection of the embedding. We shall show later, after having
defined the measure for class separability, that it is indeed so for
the example under consideration. In other words, it is possible
that the class separability could be worse in the feature space
than in the input space.

III. KERNEL OPTIMIZATION IN EMPIRICAL FEATURE SPACE

A. Data-Dependent Kernel

Different kernels create different geometrical structures of the
data in the feature space, and lead to different class discrimina-
tion. Since there is no general kernel function suitable to all data
sets [9], it is reasonable to choose the objective kernel function
to be data-dependent. In this paper, we employ a data-depen-
dent kernel similar to that used in [2] as the objective kernel to
be optimized.

Let us consider a training data
. We use the so-called “conformal

transformation of a kernel” [2] as our data-dependent kernel
function

(2)

where , , called the basic kernel, is an ordi-
nary kernel such as a Gaussian or a polynormial kernel, and ,
the factor function, is of the form

(3)

in which , , and ’s are the
combination coefficients. The set , called
the “empirical cores,” can be chosen from the training data or
determined according to the distribution of the training data. It
is easy to see that the data-dependent kernel satisfies the Mercer
condition for a kernel function [22]. In [2], Amari and Wu chose
the support vectors as the empirical cores, aiming to enlarge the
spatial resolution around the class boundary and, thus, increase
the class margin or class separation. The authors in [2] did not
consider as to how to optimize the data-dependent kernel, per-
haps in view of the complexity of the Riemannian metric in the
feature space. In the following sections, we introduce a measure
for the class separability in the empirical feature space, and de-
velop an effective algorithm for optimizing the combination co-
efficients to maximize the separability measure. Let us first
present some notations.
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Fig. 1. Two-dimensional data set and its projections in the empirical feature space onto the first two significant dimensions. (a) Two-dimensional data set consisting
of two Gaussian distributions. (b) Two-dimensional projection in the empirical feature space for the second-order polynomial kernel function. (c) Two-dimensional
projection in the empirical feature space for the Gaussian kernel function.

The kernel matrices corresponding to and
are denoted by and , respectively. That is,

and . It is easy to
see that

(4)

where is a diagonal matrix, whose diagonal elements
are . We denote the vectors

and by
and , respectively. Then, we have

...
...

. . .
...

...

(5)
where is an matrix.
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B. Class Separability Measure in the Empirical Feature Space

The training data set has the same geometrical structure in
both the feature space and the empirical feature space. In view
of this, it is better to measure the class separability of the data
in the empirical feature space, since it is easier to access the
empirical feature space than the feature space, as mentioned in
Section II. We use the following quantity for measuring the class
separability of the training data in the empirical feature space:

(6)

where is the “between-class scatter matrix,” the “within-
class scatter matrix,” and “ ” denotes the trace of a matrix. is
also the well-known Fisher scalar for measuring the class linear
separability, and is called “criteria ” in [12]. In Fisher dis-
criminant analysis (FDA), the Rayleigh quotient is often
used to measure the class separability, where

being the projection matrix, which is to be determined later in
the optimization algorithm. Compared with the Rayleigh mea-
sure , the quantity in (6) measures the class separability
in the feature space rather than in the projection subspace. More-
over, since is independent of the projections, it is more con-
venient to use it for the task of kernel optimization. Optimizing
the data-dependent kernel through means increasing the linear
separability of the training data in the feature space, and this
should lead to an improvement in the performance of the kernel
machines, since they are all essentially linear machines in the
feature space.

Let the number of samples in one of the classes, say (class
label equals ), be , and the number of samples in the other
class, say (class label equals ), be . Let be
the images of the training data in the empirical feature space,
where . Let , and , respectively, denote the
center of the entire training data and those of and in the
empirical feature space. Then, we have

where the vector denotes the th data in the th class (
, 2).
As an example, for the data set shown in Fig. 1(a), we cal-

culate the values of the measure when the polynomial kernel
with , 2, and 3. These values are found

to be 0.6027, 0.0234, and 0.1350, respectively. Considering the
fact that using the polynomial kernel with means the
feature space and input space are identical, we see that for this
example the class separability of the data in the feature space
corresponding , or is worse than that in the input
space. This confirms the observation made earlier in Section II,
which was based purely on a 2-D projection of the embedding.

Without loss of generality, let us now assume that the first
data belong to class , that is, , , and the

remaining data belong to ( ). This is done
for the sake of convenience. Then, the kernel matrices can be
written as

where , , , and represent the submatrices of
of order , , , and ,

respectively. Obviously, is the kernel matrix corresponding
to the data in class , and that for the data in class .

Let us call the following matrices “between-class” and
“within-class” kernel scatter matrices, and denote them by
and , respectively

...
...

. . .
...

We also denote by and , the between-class and the within-
class kernel scatter matrices corresponding to the basic kernel

. Now, we establish a relation between and the kernel
scatter matrices by the following theorem.

Theorem 1: Let be the -dimensional vector whose en-
tries are all equal to unity. Then

(7)

Proof: Suppose the dimension of the empirical feature
space be ( ), that is, the dot product matrix has
exactly positive eigenvalues. Let denote the matrix
whose rows are the vectors , the matrix whose
rows are ( ), and denote the matrix
whose rows are the vectors ( ).

First, we have

Since the empirical feature space preserves the dot product

Hence, we have
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Therefore

and

These two equalities prove the first part of the theorem. Fur-
thermore, using (4), we can easily see that and

. Considering that , the theorem is
established.

C. Kernel Optimization

To maximize , we follow the standard gradient approach.
Let

(8)

(9)

We now establish the following theorem.
Theorem 2:

Proof: Since ( , 2), we have

(10)

Fig. 2. Kernel optimization algorithm.

From (8) and (9), we can see

Considering , we have

(11)

and

(12)

(13)

From (10)–(13), the theorem follows.
Let and . Then, according

to Theorem 2, we have

To maximize , let , we obtain

If exists, we have

which means that the maximum value of equals to the largest
eigenvalue of the matrix , and the eigenvector corre-
sponding to the largest eigenvalue is the optimal . Unfortu-
nately, matrix is generally not symmetrical, and even
worse, may be a singular matrix.

To avoid using the eigenvalue resolution, we employ an up-
dating algorithm to get an approximate value of the optimal .
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Fig. 3. Improvement in the class separability for the polynomial basic kernel. (a) Two-dimensional projections after 200 iterations of the kernel optimization.
(b) Class separability measure J as a function of the iteration number.

According to the general gradient method, the updating equa-
tion for maximizing the class separability is given by

(14)

where and are functions of , and are two con-
stant matrices, and is the learning rate. To ensure the conver-
gence of the algorithm, a gradually decreasing learning rate is
adopted

(15)

where is the initial learning rate, denotes a prespecified
number of iterations, and represents the current iteration
number. Now, let us summarize our kernel optimization algo-
rithm on the training data in Fig. 2.

It is easy to see that the algorithm is of computa-
tional complexity, where stands for the data size and de-
notes the prespecified iteration number.

To show the effectiveness of the optimization algorithm, we
test it on the synthetic data, shown in Fig. 1(a). The polynomial
kernel, with , and the Gaussian kernel,

with are used as the basic
kernels. The parameter of the function in (3) is set as

for the polynomial basic kernel, and for the
Gaussian basic kernel. One third of the data are randomly se-
lected to form the empirical core set . The initial learning
rate of the algorithm is set to 0.5 for the polynomial kernel,
and 0.01 for the Gaussian kernel. The total iteration number is
set to 200. Fig. 3(a) shows the projections of the data in the em-
pirical feature space onto its first two dimensions corresponding
to the first two significant eigenvalues of the matrix , when
the second-order polynomial kernel is used as the basic kernel.
Fig. 3(b) shows the manner in which the value of increases as
the number of iterations is increased. The corresponding results,
when the Gaussian kernel is used, are shown in Fig. 4. It is seen

from Figs. 3 and 4 that the proposed kernel optimization algo-
rithm substantially improves the class separability of the data in
the empirical feature space and, hence, in the feature space.

D. Relation Between the Measure and the Alignment
Measure

The “alignment” measure was introduced by Cristianini et al.
[9] in order to measure the adaptability of a kernel to the target
data, and provide a practical objective for kernel optimization.
In this section, we show that the alignment measure is related to
our class separability measure .

The alignment measure is defined in [9] as a normalized
Frobenius inner product between the kernel matrix and the
target label matrix

where denotes the label vector of the training data, and the
Frobenius product between two Gram matrices and is
defined as . Obviously,
the Frobenius product can also been written as

, where denotes a matrix whose entries
are obtained by multiplying the corresponding entries of the two

matrices and .
If we substitute the kernel and label matrices by their cen-

tered matrices and , in which ,
the alignment of the centered kernel matrices, called centered
alignment, can be written as

(16)

We now show that the following equality holds:

(17)
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Fig. 4. Improvement in the class separability for the Gaussian basic kernel. (a) Two-dimensional projections after 200 iterations of the kernel optimization.
(b) Class separability measure J as a function of the iteration number.

where represents the between-class kernel scatter matrix for
the centered kernel matrix .

Since

we have

(18)
and

Therefore

(19)

where denotes the submatrices of corresponding to .
Hence, from (18) and (19), the equality given by (17) is proved.

From (17) and (8), we see that the alignment measure is equal
to , provided the kernel matrix has been centralized to
and normalized by its Frobenius length in the pre-
processing. Therefore, optimizing the alignment measure essen-
tially means increasing the between-class distance of the data in
the feature space. Moreover, optimizing the class separability
measure in (6) not only increases the between-class distance

, but also reduces the within-class distance of the data in
the feature space. In the next section, simulations on real data

sets are carried out to demonstrate a corresponding increase of
the centered alignment measure and the class separability
measure in the process of the kernel optimization.

E. Kernel Optimization and Overfitting

Since the kernel optimization is carried out only on the
training data, a question about the effect on the test data nat-
urally arises. We assume the training data and the test data
have the same spatial distribution; therefore, increasing the
adaptation of a kernel to the training data, or increasing the
class separability of the training data in the feature space,
should lead to a similar effect on the test data. In this section,
we illustrate that the class separability of the test data improves
in the same manner as that of the training data to which the
optimization algorithm is applied. In order to do so, three real
data sets, namely, Ionosphere, Wisconsin Breast Cancer, and
Monks3, adopted from the UCI benchmark repository [5], are
considered. Ionosphere contains 351 34-dimensional samples,
Breast Cancer contains 569 30-dimensional data, and Monks3
includes 432 6-dimensional samples. Each data set is first nor-
malized to a distribution with zero mean and unit variance, and
then randomly partitioned into three equal and disjoint parts.
One of these parts is used as the empirical core set , and
the other two as the training and test sets. The parameters in the
optimization algorithm are set as , for the
Ionosphere and Breast Cancer data, and ,
for the Monks3 data. The initial learning rate in (15) and the
iteration number are set to 0.01 and 200, respectively, for all
the three data sets.

Fig. 5(a) shows the projections of the training and test data in
their respective empirical feature space onto the first two signifi-
cant dimensions before the kernel optimization. Fig. 5(b) shows
the corresponding projections of the training and test data after
the kernel optimization. It can been seen that the class separa-
bility for the training as well as for the test data has substan-
tially improved in a similar manner, although the optimization
algorithm is performed only on the training data. Furthermore,
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Fig. 5. Class separability for the Ionosphere training and test data. (a) Two-dimensional projection of the training and test data before the kernel optimization.
(b) Two-dimensional projection of the training and test data after the kernel optimization.

Fig. 6(a) and (b) shows the increasing nature of the class sepa-
rability measure and the centered alignment measure with
respect to the number iterations of the algorithm not only for
the training data but also for the test data. The corresponding
results for the Breast Cancer and Monks3 data are presented in
Figs. 7–10.

IV. CLASSIFICATION WITH THE OPTIMIZED KERNEL

In this section, we conduct experiments on real data sets for
data classification in order to show that using the optimized
data-dependent kernel can further improve the performance of
the data classification algorithms such as the k-nearest-neighbor
(KNN), SVM, KFD, and KMSE. We also compare the pro-
posed kernel optimization method with the alignment method
[9] with regard to the data classification. Before we present
the experiment results, we first summarize the algorithms men-
tioned previously.

A. Data Classification Algorithms

1) KNN Classification: The KNN method is the simplest,
yet a useful one for data classification. Its performance, how-
ever, deteriorates dramatically when the input data set has a rela-
tively low local relevance [11]. It is obvious that for the Gaussian
kernel, there is no benefit in performing the KNN classification
in the feature space, since the distance-based ranking in both
the input and the feature space are the same. However, with the
use of the data-dependent kernel in the KNN method, especially
after the kernel is optimized according to the proposed algo-
rithm, the distance metric between each pair of data is appropri-
ately modified in the optimization process, and the local rele-
vance of the data in the feature space could be significantly im-
proved, as shown in Figs. 5 and 7, and especially Fig. 9. There-
fore, the performance of the KNN classifier can be significantly
improved by the use of the optimized kernel. Through the exper-
imental results given in Section IV-B, we will see a remarkable
reduction in the classification error of the KNN method, when
the optimized kernel is used.
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Fig. 6. (a) Class separability measure J of the Ionosphere training and test data as a function of the number of iterations. (b) Centered alignment measure A of
the Ionosphere training and test data as a function of the number of iterations.

2) SVM: Given the training data set , the support
vector classifier (SVM) [6], [10], [16], [22] is designed to find
the solution of the following quadratic programming problem:

subject to

where is a regularization constant. This quadratic pro-
gramming can be solved by the interior point algorithm [28], and
a more efficient implementation for the case of a large-scale ma-
trix can be found in [13]. After solving the quadratic program-
ming problem, the nonlinear discrimination function is con-
structed as

(20)

where can be estimated by the so-called support vectors, as
expained in [16]. In the experiments, we follow the method used
in [18] to implement the SVM.

3) KFD: A kernel version of the Fisher discriminat has been
proposed in [15]. However, for the sake of simplicity, we essen-
tially follow the method given in [3] to summarize and imple-
ment the KFD algorithm.

Let and , respectively, denote the between-class and
within-class scatter matrices of the training data, and be
the variance matrix of the training data, then, .
Under the class separability criterion of [12], which
is proven to be equivalent to the frequently used criterion of

[12], the optimal projection direction that max-
imizes is proportional to , where
and are the means of the two classes. Let denote the mean

of the entire training data. According to the derivation in [3],
and the so-called kernel trick, the discrimination function, after
modifying the center of the data to the origin, can be written as

where the -dimensional vector is the modified label vector in
which values and are divided by the sample size of each
class, is the eigen decomposition of the centered matrix

, denotes the vector ,
and equals to .

4) KMSE: A kernel version of the minimum squared error
machine, which is based on matrix pseudoinversion, has been
proposed in [3]. The formula derived in [3] is suitable only when
the center of the training data in the feature space is located at
the origin, that is, . However, we can
easily extend the formula in [3] to the general situation.

First, we need to solve a general linear system, ,
to minimize the MSE cost

where is the sample matrix defined in Section II, denotes
the -dimensional weight vector, and the vector of the associ-
ated class labels. Let , and . Then
the general linear system becomes

with the following function to be minimized:

The solution is
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Fig. 7. Class separability for the Breast Cancer training and test data. (a) Two-dimensional projection of the training and test data before the kernel optimization.
(b) Two-dimensional projection of the training and test data after the kernel optimization.

Fig. 8. (a) Class separability measure J of the Breast Cancer training and test data as a function of the number of iterations. (b) Centered alignment measure A
of the Breast Cancer training and test data as a function of the number of iterations.
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Fig. 9. Class separability for the Monks3 training and test data. (a) Two-dimensional projection of the training and test data before the kernel optimization.
(b) Two-dimensional projection of the training and test data after the kernel optimization.

Fig. 10. (a) Class separability measure J of the Monks3 training and test data as a function of the number of iterations. (b) Centered alignment measure A of
the Monks3 training and test data as a function of the number of iterations.



XIONG et al.: OPTIMIZING THE KERNEL IN THE EMPIRICAL FEATURE SPACE 471

TABLE I
BASIC INFORMATION ABOUT THE UCI DATA SETS, WHERE N STANDS

FOR THE NUMBER OF THE DATA POINTS IN EACH DATA SET, AND d

DENOTES THE DIMENSION OF THE DATA

where is the pseudoinverse of the rectangular matrix .
Using the so-called kernel trick as in [3], we obtain the general
discrimination function

(21)

Comparing (21) with the formula in [3], we only need to modify
the vector and the matrix by adding unity to each of the
entries in and , respectively. The KMSE and KFD algo-
rithms, which are based on the pseudoinverse calculation, have a
disadvantage of numerical instability. To alleviate it, a threshold

is employed to discard the eigenvalues of that are less than
the threshold .

B. Experimental Results

In this section, we conduct three sets of experiments in order
to investigate the effect of using the optimized kernel in the
classification algorithms, and to compare our kernel optimiza-
tion with the alignment-based kernel adaptation [9] in terms of
the improvements in the performance of the classification algo-
rithms. In the first set of experiments, we study the performance
of the classifiers under different parameter settings. The second
set of experiments examines the effect on the performance when
the parameters are chosen by cross validation. The final set of
experiments compares our kernel optimization method with the
alignment-based kernel adaptation method.

Eight data sets, namely, the Ionosphere, Wisconsin Breast
cancer, Liver disorder, Cleveland Heart disease (where we have
discarded the six instances containing missing values), Pima In-
dians diabetes, and the three monks data sets (Monks1, Monks2,
Monks3), are adopted from the UCI benchmark repository [5]
to test our algorithm. These eight data sets have been chosen,
since they present different degrees of difficulty from the point
of view of data classification. Table I presents some basic infor-
mation about these data sets.

We only consider the Gaussian kernel function. As done in
Section III-E, each of these eight data sets is first normalized to
a distribution with zero mean and unit variance, and then ran-
domly partitioned into three equal and disjoint parts. One part
is used as the empirical core set , and the other two as the
training and test data sets. Besides the basic kernel parameter

, the number of the nearest neighbors for KNN, the regular-
ization constant for SVM, and the threshold values of for
the KMSE and KFD algorithms, need to be set in advance. As
for the initial learning rate in (15) and the iteration number

, we again set them to 0.01 and 200, respectively, for all the
data sets.

In the first set of experiments, the parameter for KNN,
for SVM, for KMSE, and for KFD are set to 3, , ,

and , respectively. Tables II and III compare the average
error rates of the classification algorithms on the Ionosphere
data set before and after the kernel optimization for various set-
tings of and . In these tables, stands for the ordi-
nary Gaussian kernel, and represents the optimized kernel.
Table II presents the experimental results for the training data,
and Table III the corresponding results for the test data. The
values in the tables are the average error rates calculated over
twenty trials, and in each trial, all the classification algorithms
operate on the same training/test data partitions. The experi-
mental results for the Breast and Monks1 data sets are given
in Tables IV–VII. It can be seen that the use of the optimized
kernel substantially improves the performance of the classifi-
cation algorithms. In particular, for the KNN algorithm, the im-
provement in the performance is most remarkable and this is due
to an improved local relevance of the data in the feature space.

In the second set of experiments, we employ cross val-
idation to choose the parameters. We choose from {1,
3, 5, 7, 9}, from {10, , , , , , },
from , from
{0.000 01, 0.000 05, 0.0001, 0.0005,0.001, 0.005, 0.01 ,0.05,
0.1, 0.5, 1.0}, and from {0.001, 0.005, 0.01, 0.05, 0.1 ,0.5,
1.0}. When the Gaussian kernel is used, which means without
kernel optimization, we need to select for KNN, ( ) for
SVM, and ( ) for both KMSE and KFD. For the proposed
kernel-optimization-based data classification, more parameters
need to be chosen: ( ) for KNN, ( ) for SVM, and
( ) for both KMSE and KFD. Among the three subsets
for each data set, the one that is used as the empirical core set
is also employed as the validation data set for choosing the
optimal parameters. Then the algorithm with these optimal
parameter settings is operated upon the test data.

Table VIII gives the average error rates on the test data over
ten trials. We see that for the KNN algorithm there is a remark-
able improvement in the performance for all the data sets, except
for the Heart data. For the KMSE, KFD, and SVM algorithms,
the improvement is still substantial for most of the data sets.
However, we also find that for a sophisticated algorithm such as
SVM or KMSE, the improvement resulting from the use of the
optimized kernel is not always significant. It is seen that, for a
sophisticated algorithm such as SVM, increasing the class sepa-
rability of the data in the feature space does not necessarily lead
to a significant improvement of the classification performance.

Finally, we compare our kernel optimization algorithm with
the alignment-based kernel adaptation algorithm [9] in terms of
their performance. For the sake of simplicity, we only compare
the performance of the KNN algorithm ( ) for three ker-
nels, namely, the Gaussian kernel , the alignment-based
adapted kernel , and the optimized kernel . The pa-
rameters for , and ( ) for are chosen by cross
validation as before. Table IX presents the experimental results
in which the values are averaged over ten trials. We see that
although the alignment-based method provides substantial im-
provement in the case of the training data, it provides a limited
improvement in the case of the test data; in the case of the test
data, the performance could even be worse than that achieved
using the Gaussian kernel.



472 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 2, MARCH 2005

TABLE II
ERROR RATES FOR THE TRAINING SET BEFORE AND AFTER THE PROPOSED KERNEL OPTIMIZATION IN THE CASE OF THE IONOSPHERE DATA

TABLE III
ERROR RATES FOR THE TEST SET BEFORE AND AFTER THE PROPOSED KERNEL OPTIMIZATION IN THE CASE OF THE IONOSPHERE DATA

TABLE IV
ERROR RATES FOR THE TRAINING SET BEFORE AND AFTER THE PROPOSED KERNEL OPTIMIZATION IN THE CASE OF THE BREAST CANCER DATA

TABLE V
ERROR RATES FOR THE TEST SET BEFORE AND AFTER THE PROPOSED KERNEL OPTIMIZATION IN THE CASE OF THE BREAST CANCER DATA

TABLE VI
ERROR RATES FOR THE TRAINING SET BEFORE AND AFTER THE PROPOSED KERNEL OPTIMIZATION IN THE CASE OF THE MONKS1 DATA

TABLE VII
ERROR RATES FOR THE TEST SET BEFORE AND AFTER THE PROPOSED KERNEL OPTIMIZATION IN THE CASE OF THE MONKS1 DATA
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TABLE VIII
ERROR RATES AND THE IMPROVEMENT IN ERROR RATES FOR VARIOUS TEST SETS USING CROSS-VALIDATION TO CHOOSE THE PARAMETERS

TABLE IX
ERROR RATES FOR THE KNN ALGORITHM FOR VARIOUS KERNELS

V. CONCLUSION

We have presented in this paper a new approach of kernel
optimization by maximizing a measure of the class separability
in the empirical feature space. The main contributions of this
paper can be summarized as follows.

1) We have defined a new space called the empirical feature
space, a Euclidean space in which the data is embedded
in such a way that the geometrical structure of the data
in the feature apce is preserved. Compared with the fea-
ture space, the empirical feature space provides a more
convenient framework to investigate the spatial distribu-
tion of the data in the feature space, to measure the class
separability of the data in the feature space, and more im-
portantly, to study how to improve this separability.

2) Inspired by the work contained in [2], we have present
a general form of data-dependent kernel. Moreover, we
have derived an effictive algorithm for optimizing the
data-dependent kernel by maximizing the class linear
separability of the data in the empirical feature space.
With the optimized kernel, the data set in the feature
space possesses a higher level of class linear separability
and, therefore, a further improvement in the performance
of the kernel machines can be achieved, since the kernel
machines are all essentially linear machines in the feature
space.

3) Based on the relationship we have established between the
kernel matrices and the projection-independent measure

of the class separability in the empirical feature space,
we have developed an updating algorithm to maximize the
measure .

Besides, we have discussed the close relation between the
class separability measure and the alignment measure defined
by Critanini et al. [9]. Our experiments confirm that the opti-
mized kernel is more adaptive to both the training and test data,

and leads to a substantial, sometimes significant, improvement
in the performance of various data classification algorithms.
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