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Abstract. Given a set of points P ⊂ Rd, the k-means clustering problem
is to find a set of k centers C = {c1, ..., ck}, ci ∈ Rd, such that the
objective function

∑
x∈P d(x,C)2, where d(x,C) denotes the distance

between x and the closest center in C, is minimized. This is one of the
most prominent objective functions that have been studied with respect
to clustering.
D2-sampling [7] is a simple non-uniform sampling technique for choosing
points from a set of points. It works as follows: given a set of points P ⊆ Rd,
the first point is chosen uniformly at random from P . Subsequently, a
point from P is chosen as the next sample with probability proportional to
the square of the distance of this point to the nearest previously sampled
points.
D2-sampling has been shown to have nice properties with respect to
the k-means clustering problem. Arthur and Vassilvitskii [7] show that
k points chosen as centers from P using D2-sampling gives an O(log k)
approximation in expectation. Ailon et. al. [5] and Aggarwal et. al. [4]
extended results of [7] to show that O(k) points chosen as centers using
D2-sampling give O(1) approximation to the k-means objective function
with high probability. In this paper, we further demonstrate the power
of D2-sampling by giving a simple randomized (1 + ε)-approximation
algorithm that uses the D2-sampling in its core.

1 Introduction

Clustering problems arise in diverse areas including machine learning, data mining,
image processing and web-search [11, 16, 15, 25]. One of the most commonly used
clustering problems is the k-means problem. Here, we are given a set of points P
in a d-dimensional Euclidean space, and a parameter k. The goal is to find a set
C of k centers such that the objective function

∆(P,C) =
∑
p∈P

d(p, C)2

is minimized, where d(p, C) denotes the distance from p to the closest center in
C. This naturally partitions P into k clusters, where each cluster corresponds to
the set of points of P which are closer to a particular center than other centers.



It is also easy to show that the center of any cluster must be the mean of the
points in it. In most applications, the parameter k is a small constant. However,
this problem turns out to be NP-hard even for k = 2 [13].

One very popular heuristic for solving the k-means problem is the Lloyd’s
algorithm [22]. The heuristic is as follows : start with an arbitrary set of k centers
as seeds. Based on these k centers, partition the set of points into k clusters,
where each point gets assigned to the closest center. Now, we update the set of
centers as the means of each of these clusters. This process is repeated till we get
convergence. Although, this heuristic often performs well in practice, it is known
that it can get stuck in local minima [6]. There has been lot of recent research
in understanding why this heuristic works fast in practice, and how it can be
modified such that we can guarantee that the solution produced by this heuristic
is always close to the optimal solution.

One such modification is to carefully choose the set of initial k centers. Ideally,
we would like to pick these centers such that we have a center close to each of
the optimal clusters. Since we do not know the optimal clustering, we would like
to make sure that these centers are well separated from each other and yet, are
representatives of the set of points. A recently proposed idea [24, 7] is to pick the
initial centers using D2-sampling which can be described as follows. The first
center is picked uniformly at random from the set of points P . Suppose we have
picked a set of k′ < k centers – call this set C ′. Then a point p ∈ P is chosen
as the next center with probability proportional to d(p, C ′)2. This process is
repeated till we have a set of k centers.

There has been lot of recent activity in understanding how good a set of
centers picked by D2-sampling are (even if we do not run the Lloyd’s algorithm
on these seed centers). Arthur and Vassilvitskii [7] showed that if we pick k
centers with D2-sampling, then the expected cost of the corresponding solution
to the k-means instance is within O(log k)-factor of the optimal value. Ostrovsky
et. al. [24] showed that if the set of points satisfied a separation condition (named
(ε2, k)-irreducible as defined in Section 2), then these k centers give a constant
factor approximation for the k-means problem. Ailon et. al. [5] proved a bi-criteria
approximation property – if we pick O(k log k) centers by D2-sampling, then it
is a constant approximation, where we compare with the optimal solution that is
allowed to pick k centers only. Aggarwal et. al. [4] give an improved result and
show that it is enough to pick O(k) centers by D2-sampling to get a constant
factor bi-criteria approximation algorithm.

In this paper, we give yet another illustration of the power of the D2-sampling
idea. We give a simple randomized (1 + ε)-approximation algorithm for the
k-means algorithm, where ε > 0 is an arbitrarily small constant. At the heart of
our algorithm is the idea of D2-sampling – given a set of already selected centers,
we pick a small set of points by D2-sampling with respect to these selected
centers. Then, we pick the next center as the centroid of a subset of these small
set of points. By repeating this process of picking k centers sufficiently many
times, we can guarantee that with high probability, we will get a set of k centers
whose objective value is close to the optimal value. Further, the running time



of our algorithm is O(nd · 2Õ(k2/ε)) 1– for constant value of k, this is a linear
time algorithm. It is important to note that PTAS with better running time are

known for this problem. Chen [12] give an O
(
nkd+ d2nσ · 2(k/ε)O(1)

)
algorithm

for any σ > 0 and Feldman et al. [17] give an O
(
nkd+ d · poly(k/ε) + 2Õ(k/ε)

)
algorithm. However, these results often are quite involved, and use the notion of
coresets. Our algorithm is simple, and only uses the concept of D2-sampling.

1.1 Other Related Work

There has been significant research on exactly solving the k-means algorithm
(see e.g., [20]), but all of these algorithms take Ω(nkd) time. Hence, recent re-
search on this problem has focused on obtaining fast (1 + ε)-approximation
algorithms for any ε > 0. Matousek [23] gave a PTAS with running time

O(nε−2k
2d logk n). Badoiu et al. [9] gave an improved PTAS with running

time O(2(k/ε)O(1)

dO(1)n logO(k) n). de la Vega et al. [14] gave a PTAS which
works well for points in high dimensions. The running time of this algorithm is
O(g(k, ε)n logk n) where g(k, ε) = exp[(k3/ε8)(ln(k/ε) ln k]. Har-Peled et al. [18]
proposed a PTAS whose running time is O(n + kk+2ε−(2d+1)k logk+1 n logk 1

ε ).
Kumar et al. [21] gave the first linear time PTAS for fixed k – the running time of

their algorithm is O(2(k/ε)
O(1)

dn). Chen [12] used the a new coreset construction

to give a PTAS with improved running time of O(ndk+ 2(k/ε)
O(1)

d2nσ). Recently,

Feldman et al. [17] gave a PTAS with running time O(nkd+d ·poly(k/ε)+2Õ(k/ε))
– this is the fastest known PTAS (for fixed k) for this problem.

There has also been work on obtaining fast constant factor approximation
algorithms for the k-means problem based on some properties of the input points
(see e.g. [24, 8]).

1.2 Our Contributions

In this paper, we give a simple PTAS for the k-means problem based on the idea
of D2-sampling. Our work builds on and simplifies the result of Kumar et al. [21].
We briefly describe their algorithm first. It is well known that for the 1-mean
problem, if we sample a set of O(1/ε) points uniformly at random, then the mean
of this set of sampled points is close to the overall mean of the set of all points.
Their algorithm begins by sampling O(k/ε) points uniformly at random. With
reasonable probability, we would sample O(1/ε) points from the largest cluster,
and hence we could get a good approximation to the center corresponding to
this cluster (their algorithm tries all subsets of size O(1/ε) from the randomly
sampled points). However, the other clusters may be much smaller, and we may
not have sampled enough points from them. So, they need to prune a lot of points
from the largest cluster so that in the next iteration a random sample of O(k/ε)
points will contain O(1/ε) points from the second largest cluster, and so on. This

1 Õ notation hides a O(log k/ε) factor which simplifies the expression.



requires a non-trivial idea termed as tightness condition by the authors. In this
paper, we show that the pruning is not necessary if instead of using uniform
random sampling, one uses D2-sampling.

We can informally describe our algorithm as follows. We maintain a set of
candidate centers C, which is initially empty. Given a set C, |C| < k, we add
a new center to C as follows. We sample a set S of O(k/ε3) points using D2-
sampling with respect to C. From this set of sampled points, we pick a subset T
and the new center is the mean of this set T . We add this to C and continue.

From the property of D2-sampling ([4, 5]), with some constant, albeit small
probability p′, we pick up a point from a hitherto untouched cluster C ′ of the
optimal clustering. Therefore by sampling about α/p′ points using D2-sampling,
we expect to hit approximately α points from C ′. If α is large enough, (c.f.
Lemma 1), then the centroid of these α points gives a (1 + ε) approximation of
the cluster C ′. Therefore, with reasonable probability, there will be a choice of a
subset T in each iteration such that the set of centers chosen are from C ′. Since
we do not know T , our algorithm will try out all subsets of size |T | from the
sample S. Note that our algorithm is very simple, and can be easily parallelized.

Our algorithm has running time O(dn · 2Õ(k2/ε)) which is an improvement over

that of Kumar et al. [21] who gave a PTAS with running time O
(
nd · 2(k/ε)O(1)

)
.

2

Because of the relative simplicity, our algorithm generalizes to measures like
Mahalanobis distance and µ-similar Bregman divergence. Note that these do not
satisfy triangle inequality and therefore not strict metrics. Ackermann et al. [2]
have generalized the framework of Kumar et al. [21] to Bregman divergences but
we feel that the D2-sampling based algorithms are simpler.

We formally define the problem and give some preliminary results in Section 2.
In Section 3, we describe our algorithm, and then analyze it subsequently. In
Section A, we discuss PTAS for other distance measures.

2 Preliminaries

An instance of the k-means problem consists of a set P ⊆ Rd of n points in d-
dimensional space and a parameter k. For a set of points (called centers) C ⊆ Rd,
let ∆(P,C) denote

∑
p∈P d(p, C)2, i.e., the cost of the solution which picks C as

the set of centers. For a singleton C = {c}, we shall often abuse notation, and use
∆(P, c) to denote ∆(P,C). Let ∆k(P ) denote the cost of the optimal k-means
solution for P .

Definition 1. Given a set of points P and a set of centers C, a point p ∈ P is
said to be sampled using D2-sampling with respect to C if the probability of it
being sampled, ρ(p), is given by

ρ(p) =
d(p, C)2∑
x∈P d(x,C)2

=
∆({p}, C)

∆(P,C)
.

2 It can be used in conjunction with Chen [12] to obtain a superior running time but
at the cost of the simplicity of our approach



We will also need the following definition from [21].

Definition 2 (Irreducibility or separation condition). Given k and ε, a
set of points P is said to be (k, γ)-irreducible if

∆k−1(P ) ≥ (1 + γ) ·∆k(P ).

We will often appeal to the following result [20] which shows that uniform
random sampling works well for 1-means3.

Lemma 1 (Inaba et al. [20]). Let S be a set of points obtained by independently
sampling M points with replacement uniformly at random from a point set P .
Then, for any δ > 0,

∆(P, {m(S)}) ≤
(

1 +
1

δM

)
·∆(P, {m(P )}),

holds with probability at least (1 − δ). Here m(X) =
(∑

x∈X x

|X|

)
denotes the

centroid of a point set X.

Finally, we will use the following property of the squared Euclidean metric.
This is a standard result from linear algebra [19].

Lemma 2. Let P ⊆ Rd be any point set and let c ∈ Rd be any point. Then we
have the following:∑

p∈P
d(p, c)2 =

∑
p∈P

d(p,m(P ))2 + |P | · d(c,m(P ))2,

where m(P ) =
(∑

p∈P p

|P |

)
denotes the centroid of the point set.

Finally, we mention the simple approximate triangle inequality with respect
to the squared Euclidean distance measure.

Lemma 3 (Approximate triangle inequality). For any three points p, q, r ∈
Rd we have:

d(p, q)2 ≤ 2 · (d(p, r)2 + d(r, q)2).

3 PTAS for k-means

We first give a high level description behind the algorithm. We will also assume
that the instance is (k, ε)-irreducible for a suitably small parameter ε. We shall
then get rid of this assumption later. The algorithm is described in Figure 1.
Essentially, the algorithm maintains a set C of centers, where |C| ≤ k. Initially
C is empty, and in each iteration of Step 2(b), it adds one center to C till its size

3 It turns out that even minor perturbations from uniform distribution can be catas-
trophic and indeed in this paper we had to work around this.



reaches k. Given a set C, it samples a set of S points from P using D2-sampling
with respect to C (in Step 2(b)). Then it picks a subset T of S of size M = O(1/ε),
and adds the centroid of T to C. The algorithm cycles through all possible subsets
of size M of S as choices for T , and for each such choice, repeats the above steps
to find the next center, and so on. To make the presentation clearer, we pick a
k-tuple of M -size subsets (s1, . . . , sk) in advance, and when |C| = i, we pick T as
the sthi subset of S. In Step 2(i), we cycle through all such k-tuples (s1, . . . , sk).
In the analysis, we just need to show that one such k-tuple works with reasonable
probability.

We develop some notation first. For the rest of the analysis, we will fix a tuple
(s1, . . . , sk) – this will be the “desired tuple”, i.e., the one for which we can show
that the set C gives a good solution. As our analysis proceeds, we will argue
what properties this tuple should have. Let C(i) be the set C at the beginning of
the ith iteration of Step 2(b). To begin with C(0) is empty. Let S(i) be the set S
sampled during the ith iteration of Step 2(b), and T (i) be the corresponding set
T (which is the sthi subset of S(i)).

Let O1, . . . , Ok be the optimal clusters, and ci denote the centroid of points
in Oi. Further, let mi denote |Oi|, and wlog assume that m1 ≥ . . . ≥ mk. Note
that ∆1(Oi) is same as ∆(Oi, {ci}). Let ri denote the average cost paid by a
point in Oi, i.e.,

ri =

∑
p∈Oi d(p, ci)

2

mi
.

We will assume that the input set of points P are (k, ε)-irreducible. We shall
remove this assumption later. Now we show that any two optimal centers are far
enough.

Find-k-means(P)
Let N = (51200 · k/ε3), M = 100/ε, and P =

(
N
M

)
1. Repeat 2k times and output the the set of centers C that give least cost

2. Repeat for all k-tuples (s1, ..., sk) ∈ [P ]× [P ]× ....× [P ] and
pick the set of centers C that gives least cost

(a) C ← {}
(b) For i← 1 to k

Sample a set S of N points with D2-sampling (w.r.t. centers C)
Let T be the sthi subset of S. a

C ← C ∪ {m(T )}. b

a For a set of size N we consider an arbitrary ordering of the subsets of size M of this
set.

b m(T ) denote the centroid of the points in T .

Fig. 1. The k-means algorithm that gives (1+ε)-approximation for any (k, ε)-irreducible

data set. Note that the inner loop is executed at most 2k ·
((
N
M

))k ∼ 2k · 2Õ(k/ε) times.



Lemma 4. For any 1 ≤ i, j ≤ k, i 6= j,

d(ci, cj)
2 ≥ ε · (ri + rj).

Proof. Suppose i > j, and hence mi ≥ mj . For the sake of contradiction assume
d(ci, cj)

2 < ε · (ri + rj). Then we have,

∆(Oi ∪Oj , {ci}) = mi · ri +mj · rj +mj · d(ci, cj)
2 (using Lemma 2)

≤ mi · ri +mj · rj +mj · ε · (ri + rj)

≤ (1 + ε) ·mi · ri + (1 + ε) ·mj · rj (since mi ≥ mj)

≤ (1 + ε) ·∆(Oi ∪Oj , {ci, cj})

This implies that the centers {c1, ..., ck}\{cj} give a (1 + ε)-approximation to the
k-means objective. This contradicts the assumption that P is (ε, k)-irreducible.

We give an outline of the proof. Suppose in the first i− 1 iterations, we have
found centers which are close to the centers of some i− 1 clusters in the optimal
solution. Conditioned on this fact, we show that in the next iteration, we are
likely to sample enough number of points from one of the remaining clusters (c.f.
Corollary 1). Further, we show that the samples from this new cluster are close
to uniform distribution (c.f. Lemma 6). Since such a sample does not come from
exactly uniform distribution, we cannot apply Lemma 1 directly. In fact, dealing
with the slight non-uniformity turns out to be non-trivial (c.f. Lemmas 7 and 8).

We now show that the following invariant will hold for all iterations : let
C(i−1) consist of centers c′1, . . . , c

′
i−1 (added in this order). Then, with probability

at least 1
2i , there exist distinct indices j1, . . . , ji−1 such that for all l = 1, . . . , i−1,

∆(Ojl , c
′
l) ≤ (1 + ε/20) ·∆(Ojl , cjl) (1)

Suppose this invariant holds for C(i−1) (the base case is easy since C(0) is empty).
We now show that this invariant holds for C(i) as well. In other words, we just
show that in the ith iteration, with probability at least 1/2, the algorithm finds
a center c′i such that

∆(Oji , c
′
i) ≤ (1 + ε/20) ·∆(Oji , cji),

where ji is an index distinct from {j1, . . . , ji−1}. This will basically show that at
the end of the last iteration, we will have k centers that give a (1+ε)-approximation
with probability at least 2−k.

We now show that the invariant holds for C(i). We use the notation developed
above for C(i−1). Let I denote the set of indices {j1, . . . , ji−1}. Now let ji be
the index j /∈ I for which ∆(Oj , C

(i−1)) is maximum. Intuitively, conditioned on
sampling from clusters in Oi, · · · , Ok using D2-sampling, it is likely that enough
points from Oji will be sampled. The next lemma shows that there is good chance
that elements from the sets Oj for j /∈ I will be sampled.

Lemma 5. ∑
l/∈I ∆(Ol, C

(i−1))∑k
l=1∆(Ol, C(i−1))

≥ ε/2.



Proof. Suppose, for the sake of contradiction, the above statement does not hold.
Then,

∆(P,C(i−1)) =
∑
l∈I

∆(Ol, C
(i−1)) +

∑
l/∈I

∆(Ol, C
(i−1))

<
∑
l∈I

∆(Ol, C
(i−1)) +

ε/2

1− ε/2
·
∑
l∈I

∆(Ol, C
(i−1)) (by our assumption)

=
1

1− ε/2
·
∑
l∈I

∆(Ol, C
(i−1))

≤ 1 + ε/20

1− ε/2
·
∑
l∈I

∆1(Ol) (using the invariant for C(i−1))

≤ (1 + ε) ·
∑
l∈I

∆1(Ol) ≤ (1 + ε) ·
∑
l∈[k]

∆1(Ol)

But this contradicts the fact that P is (k, ε)-irreducible.

We get the following corollary easily.

Corollary 1.
∆(Oji , C

(i−1))∑k
l=1∆(Ol, C(i−1))

≥ ε

2k
.

The above Lemma and its Corollary say that with probability at least ε
2k ,

points in the set Oji will be sampled. However the points within Oji are not
sampled uniformly. Some points in Oji might be sampled with higher probability
than other points. In the next lemma, we show that each point will be sampled
with certain minimum probability.

Lemma 6. For any l /∈ I and any point p ∈ Ol,

d(p, C(i−1))2

∆(Ol, C(i−1))
≥ 1

ml
· ε

64
.

Proof. Fix a point p ∈ Ol. Let jt ∈ I be the index such that p is closest to c′t
among all centers in C(i−1). We have

∆(Ol, C
(i−1)) ≤ ml · rl +ml · d(cl, c

′
t)

2 (using Lemma 2)

≤ ml · rl + 2 ·ml ·
(
d(cl, cjt)

2 + d(cjt , c
′
t)

2
)

(using Lemma 3)

≤ ml · rl + 2 ·ml ·
(
d(cl, cjt)

2 +
εrt
20

)
, (2)

where the second inequality follows from the invariant condition for C(i−1). Also,
we know that

d(p, c′t)
2 ≥ d(cjt , cl)

2

8
− d(cjt , c

′
t)

2 (using Lemma 3)

≥ d(cjt , cl)
2

8
− ε

20
· rt (using the invariant for C(i−1))

≥ d(cjt , cl)
2

16
(Using Lemma 4) (3)



So, we get

d(p, C(i−1))2

∆(Ol, C(i−1))
≥ d(cjt , cl)

2

16 ·ml ·
(
rl + 2

(
d(cjt , cl)

2 + εrt
20

)) (using (2) and (3))

≥ 1

16 ·ml
· 1

(1/ε) + 2 + 1/20
≥ ε

64 ·ml
(using Lemma 4)

Recall that S(i) is the sample of size N in this iteration. We would like to
show that that the invariant will hold in this iteration as well. We first prove a
simple corollary of Lemma 1.

Lemma 7. Let Q be a set of n points, and γ be a parameter, 0 < γ < 1. Define
a random variable X as follows : with probability γ, it picks an element of Q
uniformly at random, and with probability 1 − γ, it does not pick any element
(i.e., is null). Let X1, . . . , X` be ` independent copies of X, where ` = 400

γε . Let

T denote the (multi-set) of elements of Q picked by X1, . . . , X`. Then, with
probability at least 3/4, T contains a subset U of size 100

ε which satsifies

∆(P,m(U)) ≤
(

1 +
ε

20

)
∆1(P ) (4)

Proof. Define a random variable I, which is a subset of the index set {1, . . . , `},
as follows I = {t : Xt picks an element of Q, i.e., it is not null}. Conditioned on
I = {t1, . . . , tr}, note that the random variables Xt1 , . . . , Xtr are independent
uniform samples from Q. Thus if |I| ≥ 100

ε , then Lemma 1 implies that with
probability at least 0.8, the desired event (4) happens. But the expected value of
|I| is 400

ε , and so, |I| ≥ 100
ε with high probability, and hence, the statement in

the lemma is true.

We are now ready to prove the main lemma.

Lemma 8. With probability at least 1/2, there exists a subset T (i) of S(i) of size
at most 100

ε such that

∆(Oji ,m(T (i))) ≤ (1 +
ε

20
) ·∆1(Oji).

Proof. Recall that S(i) contains N = 51200k
ε3 independent samples of P (using

D2-sampling). We are interested in S(i) ∩Oji . Let Y1, . . . , YN be N independent
random variables defined as follows : for any t, 1 ≤ t ≤ N , Yt picks an element
of P using D2-sampling with respect to C(i−1). If this element is not in Oji , it

just discards it (i.e., Yt is null). Let γ denote ε2

128k . Corollary 1 and Lemma 6
imply that Yt picks a particular element of Oji with probability at least γ

mji
. We

would now like to apply Lemma 7 (observe that N = 400
γε ). We can do this by a

simple coupling argument as follows. For a particular element p ∈ Oji , suppose

Yt assigns probability γ(p)
mji

to it. One way of sampling a random variable Xt as

in Lemma 7 is as follows – first sample using Yt. If Yt is null then, Xt is also



null. Otherwise, suppose Yt picks an element p of Oji . Then, Xt is equal to p
with probability γ

γ(p) , null otherwise. It is easy to check that with probability γ,

Xt is a uniform sample from Oji , and null with probability 1− γ. Now, observe
that the set of elements of Oji sampled by Y1, . . . , YN is always a superset of
X1, . . . , XN . We can now use Lemma 7 to finish the proof.

Thus, we will take the index si in Step 2(i) as the index of the set T (i) as
guaranteed by the Lemma above. Finally, by repeating the entire process 2k times,
we make sure that we get a (1 + ε)-approximate solution with high probability.

Note that the total running time of our algorithm is
(
nd · 2k · 2Õ(k/ε)

)
.

Removing the (k, ε)-irreducibility assumption : We now show how to re-
move this assumption. First note that we have shown the following result.

Theorem 1. If a given point set (k, ε
(1+ε/2)·k )-irreducible, then there is an al-

gorithm that gives a (1 + ε
(1+ε/2)·k )-approximation to the k-means objective and

that runs in time O(nd · 2Õ(k2/ε)).

Proof. The proof can be obtained by replacing ε by ε
(1+ε/2)·k in the above analysis.

Suppose the point set P is not (k, ε
(1+ε/2)·k )-irreducible. In that case it will

be sufficient to find fewer centers that (1 + ε)-approximate the k-means objective.
The next lemma shows this more formally.

Theorem 2. There is an algorithm that runs in time O(nd · 2Õ(k2/ε)) and gives
a (1 + ε)-approximation to the k-means objective.

Proof. Let P denote the set of points. Let 1 < j ≤ k be the largest index such
that P is (i, ε

(1+ε/2)·k )-irreducible. If no such i exists, then

∆1(P ) ≤
(

1 +
ε

(1 + ε/2) · k

)k
·∆k(P ) ≤ (1 + ε) ·∆k(P ),

and so picking the centroid of P will give a (1 + ε)-approximation.

Suppose such an i exists. In that case, we consider the i-means problem and
from the previous lemma we get that there is an algorithm that runs in time

O(nd · 2i · 2Õ(i2/ε)) and gives a (1 + ε
(1+ε/2)·k )-approximation to the i-means

objective. Now we have that

∆i ≤
(

1 +
ε

(1 + ε/2) · k

)k−i
·∆k ≤ (1 + ε) ·∆k.

Thus, we are done.



4 Other Distance Measures

In the previous sections, we looked at the k-means problem where the dissimilarity
or distance measure was the square of Euclidean distance. There are numerous
practical clustering problem instances where the dissimilarity measure is not a
function of the Euclidean distance. In many cases, the points are not generated
from a metric space. In these cases, it makes sense to talk about the general
k-median problem that can be defined as follows:

Definition 3 (k-median with respect to a dissimilarity measure). Given
a set of n objects P ⊆ X and a dissimilarity measure D : X × X → R≥0, find a
subset C of k objects (called medians) such that the following objective function
is minimized:

∆(P,C) =
∑
p∈P

min
c∈C

D(p, c)

In this section, we will show that our algorithm and analysis can be easily
generalized and extended to dissimilarity measures that satisfy some simple
properties. We will look at some interesting examples. Due to lack of space, we
just give our main results for this section. The entire discussion could be found
in the Appendix.

Theorem 3 (k-median w.r.t. Mahalanobis distance). Let 0 < ε ≤ 1/2.

There is an algorithm that runs in time O(nd · 2Õ(k2/ε)) and gives a (1 + ε)-
approximation to the k-median objective function w.r.t. Mahalanobis distances
for any point set P ∈ Rd, |P | = n.

Theorem 4 (k-median w.r.t. µ-similar Bregman divergences). Let 0 <

µ ≤ 1 and 0 < ε ≤ 1/2. There is an algorithm that runs in time O

(
nd · 2Õ

(
k2

µ·ε

))
and gives a (1 + ε)-approximation to the k-median objective function w.r.t. µ-
similar Bregman divergence for any point set P ∈ Rd, |P | = n.
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A Other Distance Measures

In the Section 3, we looked at the k-means problem where the dissimilarity or
distance measure was the square of Euclidean distance. There are numerous
practical clustering problem instances where the dissimilarity measure is not a
function of the Euclidean distance. In many cases, the points are not generated
from a metric space. In these cases, it makes sense to talk about the general
k-median problem that can be defined as follows:

Definition 4 (k-median with respect to a dissimilarity measure). Given
a set of n objects P ⊆ X and a dissimilarity measure D : X × X → R≥0, find a
subset C of k objects (called medians) such that the following objective function
is minimized:

∆(P,C) =
∑
p∈P

min
c∈C

D(p, c)

In this section, we will show that our algorithm and analysis can be easily
generalized and extended to dissimilarity measures that satisfy some simple
properties. We will look at some interesting examples. We start by making the
observation that in the entire analysis of Section 3 the only properties of the
distance measure that we used were given in Lemmas 1, 2, and 3. We also used
the symmetry property of the Euclidean metric implicitly. This motivates us to
consider dissimilarity measures on spaces where these lemmas (or mild relaxations
of these) are true. For such measures, we may replace d(p, q)2 (this is the square
of the Euclidean distance) by D(p, q) in all places in Section 3 and obtain a
similar result. We will now formalize these ideas.

First, we will describe a property that captures Lemma 1. This is similar to a
definition by Ackermann et. al. [3] who discuss PTAS for the k-median problem
with respect to metric and non-metric distance measures.

Definition 5 ((f, γ, δ)-Sampling property). Given 0 < γ, δ ≤ 1 and f :
R×R→ R, a distance measure D over space X is said to have (f, γ, δ)-sampling
property if the following holds: for any set P ⊆ X , a uniformly random sample S
of f(γ, δ) points from P satisfies

Pr

∑
p∈P

D(p,m(S)) ≤ (1 + γ) ·∆1(P )

 ≥ (1− δ),

where m(S) =
∑
s∈S s

|S| denotes the mean of points in S.

Definition 6 (Centroid property). A distance measure D over space X is
said to satisfy the centroid property if for any subset P ⊆ X and any point c ∈ X ,
we have: ∑

p∈P
D(p, c) = ∆1(P ) + |P | ·D(m(P ), c),

where m(P ) =
∑
p∈P p

|P | denotes the mean of the points in P .



Definition 7 (α-approximate triangle inequality). Given α ≥ 1, a distance
measure D over space X is said to satisfy α-approximate triangle inequality if
for any three points p, q, r ∈ X , D(p, q) ≤ α · (D(p, r) +D(r, q))

Definition 8 (β-approximate symmetry). Given 0 < β ≤ 1, a distance
measure D over space X is said to satisfy β-symmetric property if for any pair
of points p, q ∈ X , β ·D(q, p) ≤ D(p, q) ≤ 1

β ·D(q, p)

The next theorem gives the generalization of our results for distance measures
that satisfy the above basic properties. The proof of this theorem follows easily
from the analysis in Section 3. The proof of this theorem is given in Appendix B.

Theorem 5. Let f : R × R → R. Let α ≥ 0, 0 < β ≤ 1, and 0 < δ < 1/2 be

constants and let 0 < ε ≤ 1/2. Let η = 2α2

β2 (1+1/β). Let D be a distance measure
over space X that D follows:

1. β-approximate symmetry property,
2. α-approximate triangle inequality,
3. Centroid property, and
4. (f, ε, δ)-sampling property.

Then there is an algorithm that runs in time O
(
nd · 2Õ(k·f(ε/ηk,0.2))

)
and gives a

(1 + ε)-approximation to the k-median objective for any point set P ⊆ X , |P | = n.

The above theorem gives a characterization for when our non-uniform sampling
based algorithm can be used to obtain a PTAS for a dissimilarity measure. The
important question now is whether there exist interesting distance measures that
satisfy the properties in the above Theorem. Next, we look at some distance
measures other than squared Euclidean distance, that satisfy such properties.

A.1 Mahalanobis distance

Here the domain is Rd and the distance is defined with respect to a positive
definite matrix A ∈ Rd×d. The distance between two points p, q ∈ Rd is given by
DA(p, q) = (p− q)T ·A · (p− q). Now, we discuss the properties in Theorem 5.

1. (Symmetry) For any pair of points p, q ∈ Rd, we have DA(p, q) = DA(q, p).
So, the β-approximate symmetry property holds for β = 1.

2. (Triangle inequality) [2] shows that α-approximate triangle inequality holds
for α = 2.

3. (Centroid) The centroid property is shown to hold for Mahalanobis distance
in [10].

4. (Sampling) [3] (see Corollary 3.7) show that Mahalanobis distance satisfy the
(f, γ, δ)-sampling property for f(γ, δ) = 1/(γδ).

Using the above properties and Theorem 5, we get the following result.

Theorem 6 (k-median w.r.t. Mahalanobis distance). Let 0 < ε ≤ 1/2.

There is an algorithm that runs in time O(nd · 2Õ(k2/ε)) and gives a (1 + ε)-
approximation to the k-median objective function w.r.t. Mahalanobis distances
for any point set P ∈ Rd, |P | = n.



A.2 µ-similar Bregman divergence

We start by defining Bregman divergence and then discuss the required properties.

Definition 9 (Bregman Divergence). Let φ : X → Rd be a continuously-
differentiable real-valued and strictly convex function defined on a closed convex
set X.The Bregman distance associated with φ for points p, q ∈ X is:

Dφ(p, q) = φ(p)− φ(q)−∆φ(q)T (p− q)

Where ∆φ(q) denotes the gradient of φ at point q

Intuitively this can be thought of as the difference between the value of φ
at point p and the value of the first-order Taylor expansion of φ around point q
evaluated at point p. Bregman divergence includes the following popular distance
measures:

– Euclidean distance. Dφ(p, q) = ||p− q||2. Here φ(x) = ||x||2.
– Kullback-Leibler divergence. Dφ(p, q) =

∑
i pi · ln

pi
qi
−
∑
i(pi − qi). Here

Dφ(x) =
∑
i xi · lnxi − xi.

– Itakura-Saito divergence. Dφ(p, q) =
∑
i

(
ln pi

qi
− ln qi

pi
− 1
)

. Here φ(x) =

−
∑
i lnxi.

– Mahalanobis distance. For a symmetric positive definite matrix U ∈ Rd×d,
the Mahalanobis distance is defined as: DU (p, q) = (p− q)TU(p− q). Here
φU (x) = xTUx.

Bregman divergences have been shown to satisfy the Centroid property by
Banerjee et. al. [10]. All Bregman divergences do not necessarily satisfy the
symmetry property or the triangle inequality. So, we cannot hope to use our
results for the class of all Bregman divergences. On the other hand, some of
the Bregman divergences that are used in practice satisfy a property called
µ-similarity (see [1] for an overview of such Bregman divergences). Next, we give
the definition of µ-similarity.

Definition 10 (µ-similar Bregman divergence). A Bregman divergence Dφ

on domain X ⊆ Rd is called µ-similar for constant 0 < µ ≤ 1, if there exists a
symmetric positive definite matrix U such that for Mahalanobis distance DU and
for each p, q ∈ X we have:

µ ·DU (p, q) ≤ Dφ(p, q) ≤ DU (p, q). (5)

Now, a µ-similar Bregman divergence can easily be shown to satisfy approx-
imate symmetry and triangle inequality properties. This is formalized in the
following simple lemma. The proof of this lemma is given in the Appendix C.

Lemma 9. Let 0 < µ ≤ 1. Any µ-similar Bregman divergence satisfies the
µ-approximate symmetry property and (2/µ)-approximate triangle inequality.



Finally, we use the sampling property from Ackermann et. al. [3] who show
that any µ-similar Bregman divergence satisfy the (f, γ, δ)-sampling property for
f(γ, δ) = 1

µγδ .
Using all the results mentioned above we get the following Theorem for

µ-similar Bregman divergences.

Theorem 7 (k-median w.r.t. µ-similar Bregman divergences). Let 0 <

µ ≤ 1 and 0 < ε ≤ 1/2. There is an algorithm that runs in time O

(
nd · 2Õ

(
k2

µ·ε

))
and gives a (1 + ε)-approximation to the k-median objective function w.r.t. µ-
similar Bregman divergence for any point set P ∈ Rd, |P | = n.

B Proof of Theorem 5

Here we give a proof of Theorem 5. For the proof, we repeat the analysis in
Section 3 almost word-by-word. One the main things we will be doing here is
replacing all instances of d(p, q)2 in Section 3 with D(p, q). So, this section will
look very similar to Section 3. First we will restate Theorem 5.

Theorem 8 (Restatement of Theorem 5). Let f : R × R → R. Let α ≥ 0,
0 < β ≤ 1, and 0 < δ < 1/2 be constants and let 0 < ε ≤ 1/2. Let η =
2α2

β2 (1 + 1/β). Let D be a distance measure over space X that D follows:

1. β-approximate symmetry property,
2. α-approximate triangle inequality,
3. Centroid property, and
4. (f, ε, δ)-sampling property.

Then there is an algorithm that runs in time O
(
nd · 2Õ(k·f(ε/ηk,0.2))

)
and gives a

(1 + ε)-approximation to the k-median objective for any point set P ⊆ X , |P | = n.

We will first assume that the instance is (k, ε)-irreducible for a suitably small
parameter ε. We shall then get rid of this assumption later as we did in Section 3.
The algorithm remains the same and is described in Figure 2.

We develop some notation first. For the rest of the analysis, we will fix a tuple
(s1, . . . , sk) – this will be the “desired tuple”, i.e., the one for which we can show
that the set C gives a good solution. As our analysis proceeds, we will argue
what properties this tuple should have. Let C(i) be the set C at the beginning of
the ith iteration of Step 2(b). To begin with C(0) is empty. Let S(i) be the set S
sampled during the ith iteration of Step 2(b), and T (i) be the corresponding set
T (which is the sthi subset of S(i)).

Let O1, . . . , Ok be the optimal clusters, and c1, ..., ck denote the respective
optimal cluster centers. Further, let mi denote |Oi|, and wlog assume that
m1 ≥ . . . ≥ mk. Let ri denote the average cost paid by a point in Oi, i.e.,

ri =

∑
p∈Oi D(p, ci)

mi
.



Find-k-median(P)

Let η = 2α2

β2 (1 + 1/β), N = (24ηαβk)·f(ε/η,0.2)
ε2

, M = f(ε/η, 0.2), and P =
(
N
M

)
1. Repeat 2k times and output the the set of centers C that give least cost

2. Repeat for all k-tuples (s1, ..., sk) ∈ [P ]× [P ]× ....× [P ] and
pick the set of centers C that gives least cost

(a) C ← {}
(b) For i← 1 to k

Sample a set S of N points with D2-sampling (w.r.t. centers C)
Let T be the sthi subset of S. a

C ← C ∪ {m(T )}. b

a For a set of size N we consider an arbitrary ordering of the subsets of size M of this
set.

b m(T ) denote the centroid of the points in T .

Fig. 2. The algorithm that gives (1 + ε)-approximation for any (k, ε)-irreducible data

set. Note that the inner loop is executed at most 2k ·
((
N
M

))k ∼ 2k · 2Õ(k·f(ε/η,0.2)) times.

First, we show that any two optimal centers are far enough.

Lemma 10. For any 1 ≤ i < j ≤ k,

D(cj , ci) ≥ ε · (ri + rj).

Proof. Since i < j, we have mi ≥ mj . For the sake of contradiction assume
D(cj , ci) < ε · (ri + rj). Then we have,

∆(Oi ∪Oj , {ci}) = mi · ri +mj · rj +mj ·D(cj , ci) (using Centroid property)

< mi · ri +mj · rj +mj · ε · (ri + rj)

≤ (1 + ε) ·mi · ri + (1 + ε) ·mj · rj (since mi ≥ mj)

≤ (1 + ε) ·∆(Oi ∪Oj , {ci, cj})

This implies that the centers {c1, ..., ck}\{cj} give a (1 + ε)-approximation to the
k-median objective. This contradicts the assumption that P is (ε, k)-irreducible.

The above lemma gives the following Corollary that we will use in the rest of
the proof.

Corollary 2. For any i 6= j, D(ci, cj) ≥ (βε) · (ri + rj).

Proof. If i > j, then we have D(ci, cj) ≥ ε · (ri + rj) from the above lemma and
hence D(ci, cj) ≥ (βε) · (ri + rj). In case i < j, then the above lemma gives
D(cj , ci) ≥ ε · (ri + rj). Using β-approximate symmetry property we get the
statement of the corollary.



We give an outline of the proof. Suppose in the first (i − 1) iterations, we
have found centers which are close to the centers of some (i− 1) clusters in the
optimal solution. Conditioned on this fact, we show that in the next iteration, we
are likely to sample enough number of points from one of the remaining clusters
(c.f. Corollary 3). Further, we show that the samples from this new cluster are
close to uniform distribution (c.f. Lemma 12). Since such a sample does not come
from exactly uniform distribution, we cannot use the (f, γ, δ)-sampling property
directly. In fact, dealing with the slight non-uniformity turns out to be non-trivial
(c.f. Lemmas 13 and 14).

We now show that the following invariant will hold for all iterations : let
C(i−1) consist of centers c′1, . . . , c

′
i−1 (added in this order). Then, with probability

at least 1
2i , there exist distinct indices j1, . . . , ji−1 such that for all l = 1, . . . , i−1,

∆(Ojl , c
′
l) ≤ (1 + ε/η) ·∆(Ojl , cjl) (6)

Where η is a fixed constant that depends on α and β. With foresight, we fix the

value of η = 2α2

β2 · (1 + 1/β). Suppose this invariant holds for C(i−1) (the base

case is easy since C(0) is empty). We now show that this invariant holds for C(i)

as well. In other words, we just show that in the ith iteration, with probability
at least 1/2, the algorithm finds a center c′i such that

∆(Oji , c
′
i) ≤ (1 + ε/η) ·∆(Oji , cji),

where ji is an index distinct from {j1, . . . , ji−1}. This will basically show that at
the end of the last iteration, we will have k centers that give a (1+ε)-approximation
with probability at least 2−k.

We now show that the invariant holds for C(i). We use the notation developed
above for C(i−1). Let I denote the set of indices {j1, . . . , ji−1}. Now let ji be
the index j /∈ I for which ∆(Oj , C

(i−1)) is maximum. Intuitively, conditioned on
sampling from clusters in Oi, · · · , Ok using D2-sampling, it is likely that enough
points from Oji will be sampled. The next lemma shows that there is good chance
that elements from the sets Oj for j /∈ I will be sampled.

Lemma 11.

∑
l/∈I ∆(Ol, C

(i−1))∑k
l=1∆(Ol, C(i−1))

≥ ε/2.



Proof. Suppose, for the sake of contradiction, the above statement does not hold.
Then,

∆(P,C(i−1)) =
∑
l∈I

∆(Ol, C
(i−1)) +

∑
l/∈I

∆(Ol, C
(i−1))

<
∑
l∈I

∆(Ol, C
(i−1)) +

ε/2

1− ε/2
·
∑
l∈I

∆(Ol, C
(i−1)) (by our assumption)

=
1

1− ε/2
·
∑
l∈I

∆(Ol, C
(i−1))

≤ 1 + ε/η

1− ε/2
·
∑
l∈I

∆1(Ol) (using the invariant for C(i−1))

≤ (1 + ε) ·
∑
l∈I

∆1(Ol) (using η = (2α2/β2) · (1 + 1/β) ≥ 4)

≤ (1 + ε) ·
∑
l∈[k]

∆1(Ol)

But this contradicts the fact that P is (k, ε)-irreducible.

We get the following corollary easily.

Corollary 3.
∆(Oji , C

(i−1))∑k
l=1∆(Ol, C(i−1))

≥ ε

2k
.

The above Lemma and its Corollary say that with probability at least ε
2k ,

points in the set Oji will be sampled. However the points within Oji are not
sampled uniformly. Some points in Oji might be sampled with higher probability
than other points. In the next lemma, we show that each point will be sampled
with certain minimum probability.

Lemma 12. For any l /∈ I and any point p ∈ Ol,

D(p, C(i−1))

∆(Ol, C(i−1))
≥ 1

ml
· ε

3αβη
.

Proof. Fix a point p ∈ Ol. Let jt ∈ I be the index such that p is closest to c′t
among all centers in C(i−1). We have

∆(Ol, C
(i−1)) ≤ ml · rl +ml ·D(cl, c

′
t) (using Centroid property)

≤ ml · rl + α ·ml · (D(cl, cjt) +D(cjt , c
′
t)) (Using triangle inequality)

≤ ml · rl + α ·ml ·
(
D(cl, cjt) +

εrjt
η

)
, (7)

where the last inequality follows from the invariant condition for C(i−1). Also,
we know that the following inequalities hold:

α · (D(p, c′t) +D(c′t, cjt)) ≥ D(p, cjt) (from approximate triangle inequality)
(8)



α · (D(cl, p) +D(p, cjt)) ≥ D(cl, cjt) (from approximate triangle inequality)
(9)

D(p, cl) ≤ D(p, cjt) (since p ∈ Ol) (10)

β ·D(cl, p) ≤ D(p, cl) ≤ (1/β) ·D(cl, p) (from approximate symmetry) (11)

D(cjt , c
′
t) ≤ (ε/η) · rjt (from invariant condition) (12)

β ·D(cjt , c
′
t) ≤ D(c′t, cjt) ≤ (1/β) ·D(cjt , c

′
t) (from approximate symmetry)

(13)
Inequalities (9), (10), and (11) gives the following:

D(p, cjt) +D(cl, p) ≥
D(cl, cjt)

α

⇒ D(p, cjt) +
D(p, cl)

β
≥ D(cl, cjt)

α
(using (11))

⇒ D(p, cjt) +
D(p, cjt)

β
≥ D(cl, cjt)

α
(using (10))

⇒ D(p, cjt) ≥
D(cl, cjt)

α(1 + 1/β)
(14)

Using (8) and (14), we get the following:

D(p, c′t) ≥
D(cl, cjt)

α2(1 + 1/β)
−D(c′t, cjt)

Using the previous inequality and (13) we get the following:

D(p, c′t) ≥
D(cl, cjt)

α2(1 + 1/β)
− D(cjt , c

′
t)

β

≥ D(cl, cjt)

α2(1 + 1/β)
− ε

ηβ
· rjt (using the invariant for C(i−1))

≥ D(cl, cjt)

ηβ2
(Using Corollary 2) (15)

So, we get

D(p, C(i−1))

∆(Ol, C(i−1))
≥ D(cl, cjt)

(ηβ2) ·ml ·
(
rl + α

(
D(cl, cjt) + εrt

η

)) (using (7) and (15))

≥ 1

(ηβ2) ·ml
· 1

1/(βε) + α+ 1/(ηβ)

≥ ε

(3ηαβ)
· 1

ml
(using Corollary 2)

Recall that S(i) is the sample of size N in this iteration. We would like to
show that that the invariant will hold in this iteration as well. We first prove a
simple corollary of Lemma 1.



Lemma 13. Let Q be a set of n points, and γ be a parameter, 0 < γ < 1. Define
a random variable X as follows : with probability γ, it picks an element of Q
uniformly at random, and with probability 1−γ, it does not pick any element (i.e.,
is null). Let X1, . . . , X` be ` independent copies of X, where ` = 4

γ · f(ε/η, 0.2).

Let T denote the (multi-set) of elements of Q picked by X1, . . . , X`. Then, with
probability at least 3/4, T contains a subset U of size f(ε/η, 0.2) which satsifies

∆(P,m(U)) ≤
(

1 +
ε

η

)
·∆1(P ) (16)

Proof. Define a random variable I, which is a subset of the index set {1, . . . , `},
as follows I = {t : Xt picks an element of Q, i.e., it is not null}. Conditioned on
I = {t1, . . . , tr}, note that the random variables Xt1 , . . . , Xtr are independent
uniform samples from Q. Thus if |I| ≥ f(ε/η, 0.2), then sampling property wrt.
D implies that with probability at least 0.8, the desired event (16) happens. But
the expected value of |I| is 4 · f(ε/η, 0.2), and so, |I| ≥ f(ε/η, 0.2) with high
probability, and hence, the statement in the lemma is true.

We are now ready to prove the main lemma.

Lemma 14. With probability at least 1/2, there exists a subset T (i) of S(i) of
size at most f(ε/η, 0.2) such that

∆(Oji ,m(T (i))) ≤
(

1 +
ε

η

)
·∆1(Oji).

Proof. Recall that S(i) contains N = (24ηαβk)·f(ε/η,0.2)
ε2 independent samples of

P (using D2-sampling). We are interested in S(i) ∩ Oji . Let Y1, . . . , YN be N
independent random variables defined as follows : for any t, 1 ≤ t ≤ N , Yt picks
an element of P using D2-sampling with respect to C(i−1). If this element is not

in Oji , it just discards it (i.e., Yt is null). Let γ denote ε2

6ηαβk . Corollary 3 and
Lemma 12 imply that Yt picks a particular element of Oji with probability at least
γ
mji

. We would now like to apply Lemma 13 (observe that N = 4
γ · f(ε/η, 0.2)).

We can do this by a simple coupling argument as follows. For a particular element

p ∈ Oji , suppose Yt assigns probability γ(p)
mji

to it. One way of sampling a random

variable Xt as in Lemma 13 is as follows – first sample using Yt. If Yt is null,
then Xt is also null. Otherwise, suppose Yt picks an element p of Oji . Then Xt is
equal to p with probability γ

γ(p) , and null otherwise. It is easy to check that with

probability γ, Xt is a uniform sample from Oji , and null with probability 1− γ.
Now, observe that the set of elements of Oji sampled by Y1, . . . , YN is always a
superset of X1, . . . , XN . We can now use Lemma 13 to finish the proof.

Thus, we will take the index si in Step 2(i) as the index of the set T (i) as
guaranteed by the Lemma above. Finally, by repeating the entire process 2k times,
we make sure that we get a (1 + ε)-approximate solution with high probability.

Note that the total running time of our algorithm is
(
nd · 2k · 2Õ(k·f(ε/η,0.2))

)
.

Removing the (k, ε)-irreducibility assumption : We now show how to re-
move this assumption. First note that we have shown the following result.



Theorem 9. If a given point set (k, ε
(1+ε/2)·k )-irreducible, then there is an algo-

rithm that gives a (1 + ε
(1+ε/2)·k )-approximation to the k-median objective with

respect to distance measure D and that runs in time O(nd · 2Õ(k·f(ε/kη,0.2))).

Proof. The proof can be obtained by replacing ε by ε
(1+ε/2)·k in the above analysis.

Suppose the point set P is not (k, ε
(1+ε/2)·k )-irreducible. In that case it will be

sufficient to find fewer centers that (1 + ε)-approximate the k-median objective.
The next lemma shows this more formally.

Theorem 10. There is an algorithm that runs in time O(nd · 2Õ(k·f(ε/ηk,0.2)))
and gives a (1 + ε)-approximation to the k-median objective with respect to D.

Proof. Let P denote the set of points. Let 1 < j ≤ k be the largest index such
that P is (i, ε

(1+ε/2)·k )-irreducible. If no such i exists, then

∆1(P ) ≤
(

1 +
ε

(1 + ε/2) · k

)k
·∆k(P ) ≤ (1 + ε) ·∆k(P ),

and so picking the centroid of P will give a (1 + ε)-approximation.
Suppose such an i exists. In that case, we consider the i-median problem

and from the previous lemma we get that there is an algorithm that runs in

time O(nd · 2i · 2Õ(i·f(ε/ηk,0.2))) and gives a (1 + ε
(1+ε/2)·k )-approximation to the

i-median objective. Now we have that

∆i ≤
(

1 +
ε

(1 + ε/2) · k

)k−i
·∆k ≤ (1 + ε) ·∆k.

Thus, we are done.

C Proof of Lemma 9

Here we give the proof of Lemma 9. For better readability, we first restate the
Lemma.

Lemma 15 (Restatement of Lemma 9). Let 0 < µ ≤ 1. Any µ-similar
Bregman divergence satisfies the µ-approximate symmetry property and (2/µ)-
approximate triangle inequality.

The above lemma follows from the next lwo sub-lemmas.

Lemma 16 (Symmetry for µ-similar Bregman divergence). Let 0 < µ ≤
1. Consider a µ-similar Bregman divergence Dφ on domain X ⊆ Rd. For any two
points p, q ∈ X, we have: µ ·Dφ(q, p) ≤ Dφ(p, q) ≤ 1

µ ·Dφ(q, p)

Proof. Using equation(5) we get the following:

µ ·Dφ(q,p) ≤ µ·DU (q, p) = µ·DU (p, q) ≤ Dφ(p,q) ≤ DU (p, q) = DU (q, p) ≤ 1

µ
·Dφ(q,p).



Lemma 17 (Triangle inequality for µ-similar Bregman divergence). Let
0 < µ ≤ 1. Consider a µ-similar Bregman divergence Dφ on domain X ⊆ Rd.
For any three points p, q, r ∈ X, we have: (µ/2) ·Dφ(p, r) ≤ Dφ(p, q) +Dφ(q, r)

Proof. We have:

Dφ(p, q) +Dφ(q, r) ≥ µ · (DU (p, q) +DU (q, r))

≥ (µ/2) ·DU (p, r)

≥ (µ/2) ·Dφ(p, r)

The first and third inequality is using equation 5 and the second inequality is
using the approximate triangle inequality for Mahalanobis distance.


