1. Prove that any \(m \times n \) matrix is the limit of a sequence of matrices of full rank. You can use 2-norm for measuring distance between two matrices.

2. Consider the following algorithm for computing dot product of two vectors \(x, y \) in \(\mathbb{R}^n \):

\[
S = 0;
\text{for } i=1 \text{ to } n \\
\quad S = S + x_i y_i \\
\text{Output } S.
\]

Prove that this algorithm is backward stable. Now consider the following algorithm for computing matrix-vector product (you should treat both \(A \) and \(x \) as input): to compute \(Ax \), we compute dot product of each row of \(A \) with \(x \) as above. Prove that this algorithm is also backward stable.

3. Let \(A \) and \(B \) be two square \(n \times n \) matrices. Let \(C = AB \). Let \(c_1 \geq c_2 \geq \ldots \geq c_n \) be the singular values of \(C \) (define \(a_1, \ldots, a_n \) and \(b_1, \ldots, b_n \) similarly for \(A \) and \(B \) respectively). Prove that \(c_i \geq b_i \cdot a_n \).

4. Let \(A, B, C \) be three matrices of appropriate dimension so that the product \(ABC \) is defined. Prove that \(\|ABC\|_F \leq \|A\|_2 \|B\|_F \|C\|_2 \).

5. Consider the following matrix:

\[
\begin{bmatrix}
I & F \\
0 & I
\end{bmatrix},
\]

where \(I \) is the square \(n \times n \) matrix, and \(F \) is an \(n \times n \) matrix. Prove that the 2-norm of this matrix is equal to \(\sqrt{\frac{2 + \|F\|^2}{4} + \|F\|^2} \).

6. (Courtesy: Subhashis Bannerjee) Make a list of common CSE and Mathematics text books that you may have studied in your core and elective courses and a glossary of standard CSE/Mathematics terms to generate a term-document matrix. Try to have at least 20 books and 100 keywords. You may collaborate with each other to generate the data. Implement LSI in Matlab using SVD and demonstrate information retrieval. Verify whether SVD gives better clustering and noise reduction as compared to using the original matrix. Also try to generate two dimensional plots (different cross-sections) of the terms and documents with the queries to verify whether you indeed obtain meaningful clusterings. Be warned that you may have to tweak the weights a bit. Generate a report explaining why the scheme works (if it works at all).
7. Write a MATLAB program \([W, R] = \text{house}(A)\) that computes an implicit representation of a full QR factorization \(A = QR\) of an \(m \times n\) matrix \(A\) with \(m \geq n\) using Householder reflections. The output variables are a lower triangular matrix \(W\) (which is \(m \times n\)) whose column vectors define the successive Householder reflections, and a triangular \(m \times n\) matrix \(R\). Write a MATLAB program \(Q = \text{formQ}(W)\) that takes the matrix \(W\) above and generates the corresponding \(m \times m\) orthogonal matrix \(Q\).

8. Write a MATLAB program \(x = \text{leastSquare}(A, b)\) that solves the least squares problem \(Ax = b\). You should use the the program for QR factorization described above. You will use this implementation of least squares in the problem below.

9. (Heath) A planet follows an elliptic orbit, which can be represented in a Cartesian \((x, y)\) coordinate system by the equation

\[
ay^2 + bxy + cx + dy + e = x^2.
\]

(a) Determine, using least squares, the parameters \(a, b, c, d, e\) given the following observations of the planet’s positions:

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.02</th>
<th>0.95</th>
<th>0.87</th>
<th>0.77</th>
<th>0.67</th>
<th>0.56</th>
<th>0.44</th>
<th>0.30</th>
<th>0.16</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>0.39</td>
<td>0.32</td>
<td>0.27</td>
<td>0.22</td>
<td>0.18</td>
<td>0.15</td>
<td>0.13</td>
<td>0.12</td>
<td>0.13</td>
<td>0.15</td>
</tr>
</tbody>
</table>

In addition to printing the values for the orbital parameters, plot the resulting orbit and the given data points (you may want to use the matlab function \text{ezplot})).

(b) This least squares problem is nearly rank deficient. To see what effect this has on the solution, perturb the input data slightly by adding to each coordinate of each data point a random number uniformly distributed on the interval \([-0.005, 0.005]\) and solve the least squares problem with this perturbed data. Compare the new values for the parameters with the previously obtained ones. What effect does this difference have on the plot of the orbit? Can you explain the behaviour?