1. Find a recurrence relation for the number of ternary strings of length \(n \) that contain either two consecutive 0s or two consecutive 1s.

2. Find a recurrence relation for the number of bit strings of length \(n \) that contain the string 01.

3. Find the recurrence relation satisfied by \(R_n \), where \(R_n \) is the number of regions that a plane is divided into by \(n \) lines, if no two of the lines are parallel and no three of the lines go through the same point.

4. Let \(A_n \) be the \(n \times n \) matrix with 2’s on its main diagonal, 1’s in all positions next to a diagonal element, and 0’s everywhere else. Find a recurrence relation for \(d_n \), the determinant of \(A_n \). Solve this recurrence relation to find a formula for \(d_n \).

5. Let \(S(m, n) \) denote the number of onto functions from a set with \(m \) elements to a set with \(n \) elements. Show that \(S(m, n) \) satisfies the recurrence relation
\[
S(m, n) = n^m - \sum_{k=1}^{n-1} C(n, k) S(m, k)
\]
whenever \(m \geq n \) and \(n \geq 1 \), with the initial condition \(S(m, 1) = 1 \).

6. Find a recurrence relation for the number of strictly increasing sequences of positive integers that have 1 as their first term and \(n \) as their last term, where \(n \) is a positive integer.

7. Find a recurrence relation for the number of ternary strings that do not contain two consecutive 0s or two consecutive 1s.

8. Find a recurrence relation for the number of ternary strings that contain two consecutive symbols that are the same.