
CSL356

TUTORIAL SHEET 9

1. [KT-Chapter7] You have a collection of n software applications, {1, . . . , n}, running
on an old system; and now you would like to port some of these to the new system.
If you move application i to the new system, you expect a net (monetary) benefit of
bi ≥ 0. The different software applications interact with one another; if applications i
and j have extensive interaction, then the you will incur an expense if you move one of
i or j to the new system but not both – let’s denote this expense by xij ≥ 0. So if the
situation were really this simple, you would just port all n applications, achieving a
total benefit of

∑
i bi. Unfortunately, there’s a problem. Due to small but fundamental

incompatibilities between the two systems, there’s no way to port application 1 to
the new system; it will have to remain on the old system. Nevertheless, it might still
pay off to port some of the other applications, accruing the associated benefit and
incurring the expense of the interaction between applications on different systems. So
this is the question: which of the remaining applications, if any, should be moved?
Give a polynomial-time algorithm to find a set S ⊆ {2, . . . , n} for which the sum of
the benefits minus the expenses of moving the applications in S to the new system is
maximized.

Solution: This can be solved by the min-cut algorithm. We first create an undirected
graph as follows. It has a vertex for every software application – call these v1, . . . , vn,
where vi corresponds to application i. We also have a special vertex t. If applications i
and j have an associated value xij, then we have an edge between vi and vj of capacity
xij. For every vertex vi, i 6= 1, we have an edge (vi, t) of capacity bvi . Now we argue
that a v1-t min-cut will give the desired solution. Indeed, let X be such a cut. So,
v1 ∈ X, t /∈ X. What is the capacity of X? It is

∑
i,j:vi∈X,vj /∈X xij −

∑
i:vi /∈X bvi +

∑
v bv.

Note that it is exactly the expense minus benefit of moving the applications which
are not in the set X (plus a term which is fixed). Thus, finding a min-cut is same as
finding the set of applications for which expense minus benefit is minimized, or benefit
minus expense is maximized.

2. Suppose in a directed graph G, there are k edge-disjoint paths from s to t and from t
to u. Are there k edge disjoint paths from s to u ?

Solution: Yes. The proof is easy once we use the max-flow min-cut theorem. Let X
be an cut which contains s and does not contain u. What is the capacity of X ? If
X does not contain t, then X is an s-t cut, and so, its capacity must be at least k. If
X contains t, then it is a t-u cut, and so, its capacity must be at least k. Thus, any
s-u cut has capacity at least k. The max-flow min-cut theorem now shows that there
must be k edge disjoint paths from s to u.

3. [KT-Chapter7] In sociology, one often studies a graph G in which nodes represent
people, and edges represent those who are friends with each other. Let’s assume for

1

purposes of this question that friendship is symmetric, so we can consider an undirected
graph. Now, suppose we want to study this graph G, looking for a close-knit group of
people. One way to formalize this notion would be as follows. For a subset S of nodes
let e(S) denote the number of edges in S, i.e., the number of edges that have both
ends in S. We define the cohesiveness of S as e(S)/|S|. A natural thing to search for
would be the set S of people achieving the maximum cohesiveness. Give a polynomial
time algorithm that takes a rational number α and determines whether there exists a
set S with cohesiveness at least α. Give a polynomial time algorithm to find a set S
of nodes with maximum cohesiveness.

Solution: Let G = (V,E). Construct a directed graph H, which has one vertex xv
for every vertex v ∈ V , one vertex ye for every edge e ∈ E, and two special vertices s
and t. We have edges (s, ye) of capacity 1, (xv, t) of capacity α. Further, if e = (u, v)
is an edge in G, then we have directed edges (ye, xu) and (ye, xv) of infinite capacity.
Now we claim that there is a set S of cohesiveness at least α iff there is an s-t cut in
H of capacity at most |E|. Let us see why.

Let A be an s-t cut in H, and Ae denote the vertices of type ye in A and Av denote the
vertices of type xv in A. First of all, note that if ye ∈ A, where e = (u, v), then both
xu, xv ∈ A. Thus, e(Av) ≥ |Ae|. Now, the capacity of this cut is |E| − |Ae| + |Av|α ≥
|E|− e(Av) + |Av|α. Thus, if min-cut is at most |E|, then |e(Av)|/|Av| ≥ α, and so, Av

is the desired set. Conversely, if Av is a set of vertices of cohesiveness at least α, then
consider the cut A consisting of Av and ye where e has both end-points in Av. The
capacity of this cut is |E| − e(Av) + |Av|α ≤ |E|, and so, the min-cut is at most |E|.
Finally, we can find the set of maximum cohesiveness by binary search on α. Note
that cohesiveness of any set is a fraction of the form β/n!, where β lies between 0 and
n · n!. Thus we can perform a binary search on β – time take will be log(n!) which is
O(n log n).

2

