TUTORIAL SHEET 7

1. [KT-Chapter6] Suppose you are given a directed graph $G=(V, E)$ with length l_{e} on edges (which could be negative), and a sink vertex t. Assume you are also given finite values $d(v)$ for all the vertices $v \in V$. Someone claims that for each node $v \in V$, the quantity $d(v)$ is the cost of the minimum-cost path from node v to t. (i) Give a linear time algorithm which verifies whether the claim is correct, (ii) Assuming that all the distances $d(v)$ are correct, and that all $d(v)$ values are finite, you now need to compute distances to a different sink vertex t^{\prime}. Give an $O(m \log n)$ time algorithm for computing these distances $d^{\prime}(v)$ for all the vertices $v \in V$.
Solution: (i) First of all, we must have $d(v) \leq d(w)+l(v, w)$ for every edge (v, w) indeed, this says that one way of going from v to t is first go to w and then go to t. Assume this condition holds for every edge e. The first observation is that $d(v)$ is at most the length of shortest path from v to t. We can show this as follows: consider the shortest path P from v to t and then add up the above inequality for all edges in this path.
Now, consider the edges which lie on a shortest path from any of the vertices to t. On such an edge e, if the values $d()$ are indeed correct, then we must have $d(v)=$ $d(w)+l(v, w))($ why $?$). So, we consider all edges for which equality holds - such edges must form a connected graph. Now show that if P is a path in this connected graph from v to t, then $d(v)$ is equal to the length of this path (again, by adding up the equations for every edge). And so, from the previous paragraph, it follows that $d(v)$ is equal to the length of the shortest path from v to t.
(ii) We would like to run Dijkstra because Dijkstra takes $O(m \log n)$ time. But, we need all edge lengths to be non-negative. For this, we define a new length of edge $e=(v, w)$ as $l_{e}^{\prime}=l_{e}+d(w)-d(v)$. As noted above, $l_{e}^{\prime} \geq 0$. Also, argue that for any vertex v, a shortest path with respect to l_{e} is also a shortest path with respect to l_{e}^{\prime} and vice versa.
2. [Dasgupta, Papadimitriou, Vazirani -Chapter6]Suppose you are given n words w_{1}, \ldots, w_{n} and you are given the frequencies f_{1}, \ldots, f_{n} of these words. You would like to arrange them in a binary search tree (using lexicographic ordering) such that the quantity $\sum_{i=1}^{n} f_{i} h_{i}$ is minimized, where h_{i} denotes the depth of the node for word w_{i} in this tree. Give an efficient algorithm to find the optimal tree.
Solution: Suppose w_{1}, \ldots, w_{n} are arranged in lexicographic ordering. Build a table $T[]$, where $T[i, j]$ gives the cost of the optimal tree for the words w_{i}, \ldots, w_{j}. If $i=j$, then $T[i, i]=f_{i}$. For $T[i, j]$, consider the optimal tree. If the root is w_{r}, then we have w_{i}, \ldots, w_{r-1} in the left sub-tree and w_{r+1}, \ldots, w_{j} in the right subtree. Further while
computing the cost of the overall tree for $T[i, j]$ we need to account for the fact that the depth of the nodes (other than root node) increases by 1 . So,

$$
T[i, j]=\left(f_{i}+\cdots+f_{j}\right)+\max _{r=i, \ldots, j}(T[i, r-1]+T[r+1, j])
$$

3. [Dasgupta, Papadimitriou, Vazirani -Chapter6] Consider the following 3-PARTITION problem. Given integers a_{1}, \ldots, a_{n}, we want to determine whether it is possible to partition of $\{1, \ldots, n\}$ into three disjoint subsets I, J, K such that

$$
\sum_{i \in I} a_{i}=\sum_{j \in J} a_{j}=\sum_{k \in K} a_{k}=\frac{1}{3} \sum_{l=1}^{n} a_{l} .
$$

For example, for input $(1,2,3,4,4,5,8)$ the answer is yes, because there is the partition $(1,8),(4,5),(2,3,4)$. On the other hand, for input $(2,2,3,5)$ the answer is no. Devise and analyze a dynamic programming algorithm for 3-PARTITION that runs in time polynomial in n and in $\sum_{i} a_{i}$.
Solution: Build a table $T\left[i, s_{1}, s_{2}\right]$, which stores a boolean value - this value is true if it is possible to partition a_{i}, \ldots, a_{n} into 3 parts such that the first part adds up to s_{1} and the second part adds up to s_{2}. Now, you can easily check the following recurrence (write the base cases yourself):

$$
T\left[i, s_{1}, s_{2}\right]=\operatorname{OR}\left(T\left[i+1, s_{1}, s_{2}\right], T\left[i+1, s_{1}-a_{i}, s_{2}\right], T\left[i+1, s_{1}, s_{2}-a_{i}\right]\right)
$$

The three options correspond to the three options for a_{i}.
4. Given a tree $T=(V, E)$, where each vertex $v \in V$ has a weight w_{v}. Give a polynomial time algorithm to find the smallest weight subset of vertices whose removal results in a tree with exactly K leaves.

Solution: Build a table $A[v, k]$ which gives the smallest weight subset of vertices which need to be removed from the subtree rooted below v such that it has k leaves. Note that if the subtree below v, denoted by $T(v)$, has less than k leaves, then this entry is undefined. Leaf nodes form the base case - do it yourself. Now consider a node v and suppose it has children w_{1}, \ldots, w_{j}. Now, we need to figure out how many leaves we want in each of the subtrees $T\left(w_{i}\right)$. So for this, we run another dynamic program. Build a table $B\left[i, k^{\prime}\right]$ which tells us the smallest weight subset of vertices we need to remove from $T\left(w_{1}\right), \ldots, T\left(w_{i}\right)$ such that they have k^{\prime} leaves (in total). So, $B\left[1, k^{\prime}\right]$ is same as $A\left[w_{1}, k^{\prime}\right]$. Now observe that

$$
B\left[i, k^{\prime}\right]=\min _{k^{\prime \prime}=0}^{k^{\prime}}\left(B\left[i-1, k^{\prime \prime}\right]+A\left[w_{i}, k^{\prime}-k^{\prime \prime}\right]\right) .
$$

Finally, $A[v, k]=B[j, k]$. Thus, we can fill in the table A using post-order traversal.

