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TUTORIAL SHEET 7

1. [KT-Chapter6] Suppose you are given a directed graph G = (V,E) with length le
on edges (which could be negative), and a sink vertex t. Assume you are also given
finite values d(v) for all the vertices v ∈ V . Someone claims that for each node v ∈ V ,
the quantity d(v) is the cost of the minimum-cost path from node v to t. (i) Give a
linear time algorithm which verifies whether the claim is correct, (ii) Assuming that
all the distances d(v) are correct, and that all d(v) values are finite, you now need to
compute distances to a different sink vertex t′. Give an O(m log n) time algorithm for
computing these distances d′(v) for all the vertices v ∈ V .

Solution: (i) First of all, we must have d(v) ≤ d(w) + l(v, w) for every edge (v, w) —
indeed, this says that one way of going from v to t is first go to w and then go to t.
Assume this condition holds for every edge e. The first observation is that d(v) is at
most the length of shortest path from v to t. We can show this as follows: consider
the shortest path P from v to t and then add up the above inequality for all edges in
this path.

Now, consider the edges which lie on a shortest path from any of the vertices to t.
On such an edge e, if the values d() are indeed correct, then we must have d(v) =
d(w)+ l(v, w) )(why ?). So, we consider all edges for which equality holds – such edges
must form a connected graph. Now show that if P is a path in this connected graph
from v to t, then d(v) is equal to the length of this path (again, by adding up the
equations for every edge). And so, from the previous paragraph, it follows that d(v) is
equal to the length of the shortest path from v to t.

(ii) We would like to run Dijkstra because Dijkstra takes O(m log n) time. But, we
need all edge lengths to be non-negative. For this, we define a new length of edge
e = (v, w) as l′e = le + d(w) − d(v). As noted above, l′e ≥ 0. Also, argue that for any
vertex v, a shortest path with respect to le is also a shortest path with respect to l′e
and vice versa.

2. [Dasgupta, Papadimitriou, Vazirani -Chapter6]Suppose you are given n words
w1, . . . , wn and you are given the frequencies f1, . . . , fn of these words. You would like
to arrange them in a binary search tree (using lexicographic ordering) such that the
quantity

∑n
i=1 fihi is minimized, where hi denotes the depth of the node for word wi

in this tree. Give an efficient algorithm to find the optimal tree.

Solution: Suppose w1, . . . , wn are arranged in lexicographic ordering. Build a table
T [], where T [i, j] gives the cost of the optimal tree for the words wi, . . . , wj. If i = j,
then T [i, i] = fi. For T [i, j], consider the optimal tree. If the root is wr, then we have
wi, . . . , wr−1 in the left sub-tree and wr+1, . . . , wj in the right subtree. Further while
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computing the cost of the overall tree for T [i, j] we need to account for the fact that
the depth of the nodes (other than root node) increases by 1. So,

T [i, j] = (fi + · · ·+ fj) + max
r=i,...,j

(T [i, r − 1] + T [r + 1, j]).

3. [Dasgupta, Papadimitriou, Vazirani -Chapter6] Consider the following 3-PARTITION
problem. Given integers a1, . . . , an, we want to determine whether it is possible to par-
tition of {1, . . . , n} into three disjoint subsets I, J,K such that

∑
i∈I

ai =
∑
j∈J

aj =
∑
k∈K

ak =
1
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n∑
l=1

al.

For example, for input (1, 2, 3, 4, 4, 5, 8) the answer is yes, because there is the partition
(1, 8), (4, 5), (2, 3, 4). On the other hand, for input (2, 2, 3, 5) the answer is no. Devise
and analyze a dynamic programming algorithm for 3-PARTITION that runs in time
polynomial in n and in

∑
i ai.

Solution: Build a table T [i, s1, s2], which stores a boolean value – this value is true
if it is possible to partition ai, . . . , an into 3 parts such that the first part adds up to s1
and the second part adds up to s2. Now, you can easily check the following recurrence
(write the base cases yourself):

T [i, s1, s2] = OR(T [i + 1, s1, s2], T [i + 1, s1 − ai, s2], T [i + 1, s1, s2 − ai]).

The three options correspond to the three options for ai.

4. Given a tree T = (V,E), where each vertex v ∈ V has a weight wv. Give a polynomial
time algorithm to find the smallest weight subset of vertices whose removal results in
a tree with exactly K leaves.

Solution: Build a table A[v, k] which gives the smallest weight subset of vertices
which need to be removed from the subtree rooted below v such that it has k leaves.
Note that if the subtree below v, denoted by T (v), has less than k leaves, then this
entry is undefined. Leaf nodes form the base case – do it yourself. Now consider a node
v and suppose it has children w1, . . . , wj. Now, we need to figure out how many leaves
we want in each of the subtrees T (wi). So for this, we run another dynamic program.
Build a table B[i, k′] which tells us the smallest weight subset of vertices we need to
remove from T (w1), . . . , T (wi) such that they have k′ leaves (in total). So, B[1, k′] is
same as A[w1, k

′]. Now observe that

B[i, k′] =
k′

min
k′′=0

(B[i− 1, k′′] + A[wi, k
′ − k′′]).

Finally, A[v, k] = B[j, k]. Thus, we can fill in the table A using post-order traversal.
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