
CSL356 Sept 11,15,16

TUTORIAL SHEET 6

1. [KT-Chapter6] Suppose we want to replicate a file over a collection of n servers,
labeled S1, S2, . . . , Sn. To place a copy of the file at server Si results in a placement
cost of ci, for an integer ci > 0. Now, if a user requests the file from server Si, and
no copy of the file is present at Si, then the servers Si+1, Si+2, Si+3, . . . are searched
in order until a copy of the file is finally found, say at server Sj, where j > i. This
results in an access cost of j − i. (Note that the lower-indexed servers Si−1, Si−2, . . .
are not consulted in this search.) The access cost is 0 if Si holds a copy of the file.
We will require that a copy of the file be placed at server Sn, so that all such searches
will terminate, at the latest, at Sn. We would like to place copies of the files at the
servers so as to minimize the sum of placement and access costs. Formally, we say
that a configuration is a choice, for each server Si with i = 1, 2, . . . , n− 1, of whether
to place a copy of the file at Si or not. (Recall that a copy is always placed at Sn.)
The total cost of a configuration is the sum of all placement costs for servers with a
copy of the file, plus the sum of all access costs associated with all n servers. Give a
polynomial-time algorithm to find a configuration of minimum total cost.

2. [KT-Chapter6] Suppose we are given a directed graph G = (V,E), with costs on
edges – the costs may be positive or negative, but every cycle in the graph has positive
cost. We are also given two nodes v and w in the graph G. Give an efficient algorithm
to compute the number of shortest v − w paths in G (the algorithm should NOT list
the paths; it should just output the number of such paths).

3. [KT-Chapter6] Consider the following inventory problem. You are running a store
that sells some large product (let us assume you sell trucks), and predictions tell you
the quantity of sales to expect over the next n months. Let di denote the number of
sales you expect in month i. We will assume that all sales happen at the beginning
of the month, and trucks that are not sold are stored until the beginning of the next
month. You can store at most S trucks, and it costs C to store a single truck for a
month. You receive shipments of trucks by placing orders for them, and there is a fixed
ordering fee of K each time you place an order (regardless of the number of trucks you
order). You start out with no trucks. The problem is to design an algorithm that
decides how to place orders so that you satisfy all the demands {di}, and minimize the
costs. In summary:

– There are two parts to the cost. First, storage: it costs C for every truck on hand
that is not needed that month. Second, ordering fees: it costs K for every order
placed.

– In each month you need enough trucks to satisfy the demand di, but the amount
left over after satisfying the demand for the month should not exceed the inventory
limit S.

1

Give an algorithm that solves this problem in time that is polynomial in n and S.

4. [Dasgupta, Papadimitriou, Vazirani -Chapter6] You are given a string of n
characters s[1...n], which you believe to be a corrupted text document in which all
punctuation has vanished (so that it looks something like “itwasthebestoftimes...”).
You wish to reconstruct the document using a dictionary, which is available in the
form of a Boolean function dict(): for any string w, dict(w) outputs true if w is a
valid word false otherwise. Give a dynamic programming algorithm that determines
whether the string s[] can be reconstituted as a sequence of valid words. The running
time should be at most O(n2), assuming each call to dict() takes unit time.

5. [Dasgupta, Papadimitriou, Vazirani -Chapter6] We are given a checkerboard
which has 4 rows and n columns, and has an integer written in each square. We
are also given a set of 2n pebbles, and we want to place some or all of these on the
checkerboard (each pebble can be placed on exactly one square) so as to maximize the
sum of the integers in the squares that are covered by pebbles. There is one constraint:
for a placement of pebbles to be legal, no two of them can be on horizontally or
vertically adjacent squares (diagonal adjacency is fine). Give an O(n) time algorithm
to find an optimal placement of the pebbles.

6. [KT-Chapter6] Suppose you’re consulting for a small computation-intensive invest-
ment company, and they have the following type of problem that they want to solve
over and over. A typical instance of the problem is: they are doing a simulation in
which they look at n consecutive days of a given stock, at some point in the past. Let
us number the days i = 1, 2,n. For each day i, they have a price p(i) per share for
the stock on that day. (We will assume for simplicity that the price was fixed during
each day.) Suppose during this time period, they wanted to buy 1000 shares on some
day, and sell all these shares on some (later) day. They want to know: when should
they have bought and when should they have sold in order to have made as much
money as possible? (If there was no way to make money during the n days, you should
report this instead.)

Example: Suppose n = 3, p(1) = 9, p(2) = 1, p(3) = 5. Then you should return “buy”
on 2, sell on “3”; i.e. buying on day 2 and selling on day 3 means they would have
made $4 per share, the maximum possible for that period. Clearly, there is a simple
algorithm that takes time O(n2): try all possible pairs of buy/sell days and see which
makes them the most money. Your investment friends were hoping for something a
little better. Show how to find the correct numbers i and j in time O(n).

2

