TUTORIAL SHEET 6 solutions

1. Build a table $T[]$ where $T[i]$ stores the minimize the sum of placement and access cost assuming we have servers S_{i}, \ldots, S_{n} and we place a copy at S_{i}. So, $T[n]$ is c_{n}. Now to compute $T[i]$, we need to place a copy at S_{i}. Suppose the optimal solution for the problem considered by $T[i]$ places the next copy at $T[k](k>i)$ - then we need to pay for the access cost of $k-i$. Therefore,

$$
T[i]=c_{i}+\min _{k=i+1, \ldots, n}(k-i+T[k]) .
$$

2. We modify Bellman Ford algorithm. We build a table $S[i, u]$, which stores the length of the shortest path from u to w which uses at most i edges. Further, we have a table $T[i, u]$ which stores the number of paths using i edges from u to w whose cost is $S[i, u]$ (i.e., the shortest path using i edges). Now, suppose the out-neighbours of a vertex u are v_{1}, \ldots, k. Then,

$$
S[i+1, u]=\min _{r=1}^{k}\left(l_{\left(u, v_{r}\right)}+S\left[i, v_{r}\right]\right)
$$

Now, let $v_{s_{1}}, \ldots, v_{s_{l}}$ be the neighbours of u which achieve the minimum above, i.e., for which $S[i+1, u]=l_{\left(u, v_{r}\right)}+S\left[i, v_{r}\right]$. Then, we update

$$
T[i+1, u]=T\left[i, v_{s_{1}}\right]+\ldots+T\left[i, v_{s_{l}}\right] .
$$

See how to initialize the tables.
3. Build a table $T[i, s]$ which tells the optimal solution for month i till n given that you have s trucks at the beginning of month i (before you place any order for this month). How many trucks can you order at the beginning of month i if you already have s trucks ? The maximum would be $S-s+d_{i}$. If you order o_{i} trucks, then $o_{i}+s$ must be at least d_{i}. Thus, the number of trucks you can order lies in the range $\left[\max \left(0, d_{i}-s\right), S-s+d_{i}\right]$. If $d_{i}<s$, you may not order any trucks. So, if $d_{i}<s$, then

$$
T[i, s]=\max \left(T\left[i+1, s-d_{i}\right]+C\left(s-d_{i}\right),{\underset{\sim}{l=0}}_{S-s+d_{i}}^{\max _{i}}\left(K+C\left(s+l-d_{i}\right)\right) .\right.
$$

The argument for the case $d_{i}>s$ is similar except that we will not have the first term, and the range of l in the second term will be from $d_{i}-s$ to $S-s+d_{i}$.
4. Have a table $T[]$, where $T[i]$ tells you where the part of the string $s[i \ldots n]$ can be reconstituted (so, the table entry is true or false).
5. Note that there are only 7 ways in which you can tile a particular column - call these ways W_{1}, \ldots, W_{7} (2 ways in which you can put two pebbles, 4 for 1 pebble, and 1 for 0 pebble). Call two arrangements W_{i}, W_{j} compatible if placing pebbles like W_{i} and W_{j} in two adjacent columns (with W_{i} being on the left) does not violate any rules. Now have a table $T[i, c]$ which tells you the optimal placement for columns c till n provided the configuration in the column c is W_{i}. Now,

$$
T[i, c]=\operatorname{value}\left(W_{i}\right)+\max _{j} T[j, c+1],
$$

where the maximum is taken over those configurations W_{j} which are compatible with W_{i}.
6. Have table $T[]$, where $T[i]$ tells you the day after i on which the stock price is maximum (this is the day on which you should sell in case you buy on day i provided the stock price is higher than the price on day i, otherwise you should not sell at all if you buy on day i). Clearly, $T[n-1]$ is n. If $i<n-1$, then $T[i]$ is either $i+1$ or $T[i+1]$ depending on which day has higher stock price.

