
CSL356 Sept 11,15,16

TUTORIAL SHEET 6 solutions

1. Build a table T [] where T [i] stores the minimize the sum of placement and access cost
assuming we have servers Si, . . . , Sn and we place a copy at Si. So, T [n] is cn. Now
to compute T [i], we need to place a copy at Si. Suppose the optimal solution for the
problem considered by T [i] places the next copy at T [k] (k > i) – then we need to pay
for the access cost of k − i. Therefore,

T [i] = ci + min
k=i+1,...,n

(k − i + T [k]).

2. We modify Bellman Ford algorithm. We build a table S[i, u], which stores the length
of the shortest path from u to w which uses at most i edges. Further, we have a table
T [i, u] which stores the number of paths using i edges from u to w whose cost is S[i, u]
(i.e., the shortest path using i edges). Now, suppose the out-neighbours of a vertex u
are v1, . . . ,k. Then,

S[i + 1, u] =
k

min
r=1

(l(u,vr) + S[i, vr]).

Now, let vs1 , . . . , vsl be the neighbours of u which achieve the minimum above, i.e., for
which S[i + 1, u] = l(u,vr) + S[i, vr]. Then, we update

T [i + 1, u] = T [i, vs1 ] + . . . + T [i, vsl ].

See how to initialize the tables.

3. Build a table T [i, s] which tells the optimal solution for month i till n given that you
have s trucks at the beginning of month i (before you place any order for this month).
How many trucks can you order at the beginning of month i if you already have s trucks
? The maximum would be S−s+di. If you order oi trucks, then oi+s must be at least
di. Thus, the number of trucks you can order lies in the range [max(0, di−s), S−s+di].
If di < s, you may not order any trucks. So, if di < s, then

T [i, s] = max(T [i + 1, s− di] + C(s− di),
S−s+di
max
l=0

(K + C(s + l − di)).

The argument for the case di > s is similar except that we will not have the first term,
and the range of l in the second term will be from di − s to S − s + di.

4. Have a table T [], where T [i] tells you where the part of the string s[i...n] can be
reconstituted (so, the table entry is true or false).

1



5. Note that there are only 7 ways in which you can tile a particular column – call these
ways W1, . . . ,W7 (2 ways in which you can put two pebbles, 4 for 1 pebble, and 1 for 0
pebble). Call two arrangements Wi,Wj compatible if placing pebbles like Wi and Wj

in two adjacent columns (with Wi being on the left) does not violate any rules. Now
have a table T [i, c] which tells you the optimal placement for columns c till n provided
the configuration in the column c is Wi. Now,

T [i, c] = value(Wi) + max
j

T [j, c + 1],

where the maximum is taken over those configurations Wj which are compatible with
Wi.

6. Have table T [], where T [i] tells you the day after i on which the stock price is maximum
(this is the day on which you should sell in case you buy on day i provided the stock
price is higher than the price on day i, otherwise you should not sell at all if you buy
on day i). Clearly, T [n − 1] is n. If i < n − 1, then T [i] is either i + 1 or T [i + 1]
depending on which day has higher stock price.

2


