
CSL356 Sept 4,8,9

TUTORIAL SHEET 5

1. [KT-Chapter6] Suppose you own two stores, A and B. On each day you can be
either at A or B. If you are currently at store A (or B) then moving to store B the
next day (or A) will cost C amount of money. For each day i, i = 1, . . . , n, we are
also given the profits PA(i) and PB(i) that you will make if you are store A or B on
day i respectively. Give a schedule which tells where you should be on each day so
that the overall money earned (profit minus the cost of moving between the stores) is
maximized.

Solution: Define two arrays TA[] and TB[]. TA[i] gives the most profitable schedule
for days i, . . . , n given that we start at store A on day i. Define TB[i] similarly. Now,
observe that for i < n,

TA[i] = PA(i) + max(TA[i + 1], TB[i + 1]− C).

We can write a recurrence for TB[i] similarly. Further, TA[n] = PA(n), TB[n] = PB[n].

2. Given a tree T where vertices have weights, an independent set is a subset of vertices
such that there is no edge joining any two vertices in this set. Give an efficient algorithm
to find an independent set of maximum total weight.

Solution: Root the tree at any vertex r. For every vertex v, let Tv be the subtree
below v. Define two tables: A(v) and B(v). A(v) denotes the maximum independent
set of Tv provided v is in the independent set, whereas B(v) denotes the same quantity
provided v is not in the independent set. Now, note that for a leaf node v, A(v) is the
weight of v, whereas B(v) is 0. For a non-leaf node v with children w1, . . . , wk, observe
that

A(v) = weight(v) +
k∑

i=1

B(wi), B(v) =
k∑

i=1

A(wi).

Now show that you can compute these quantities using post-order traversal of the tree.

3. [KT-Chapter6] Suppose you are managing the construction of billboards on a heavily-
traveled stretch of road that runs west-east for M miles. The possible sites for bill-
boards are given by numbers x1, x2, . . . , xn, each in the interval [0,M ] (specifying their
position along the highway, measured in miles from its western end). If you place a
billboard at location xi, you receive a revenue of ri > 0. You want to place billboards
at a subset of the sites in {x1, . . . , xn} so as to maximize your total revenue, subject to
the following restrictions – (i) (The environmental constraint) You cannot build two
billboards within less than or equal 5 miles of one another on the highway, and (ii)
(The boundary constraint) You cannot build a billboard within less than 5 miles of the

1



western or eastern ends of the highway. A subset of sites satisfying these two restric-
tions will be called valid. Give an algorithm that takes an instance of this problem as
input, and returns the maximum total revenue that can be obtained from any valid
subset of sites. The running time of the algorithm should be polynomial in n.

Solution: The second condition is easy to satisfy, just remove all sites which are
within less than 5 miles of either end-point. We just have to take care of first constraint
– let the sites (after taking care of first constraint) be {x1, . . . , xn}. For each site i,
draw an interval of length 5 starting from xi. Now notice that this becomes an instance
of the interval selection problem.

4. You are given N boxes, where box i has height hi, width wi and length li. Give an
algorithm for finding a stacking of a subset of boxes of maximum total height : box i
can be stacked on top of box j if wi < wj and li < lj.

Solution: Let the boxes in decreasing order of width be B1, . . . , BN . Define table
T [] as follows: T [i] gives the maximum total height from boxes Bi, . . . , Bn provided the
box Bi is at the bottom. Clearly, T [n] is just hn. Now, to compute T [i], consider the
optimal solution for the instance Bi, . . . , Bn where Bi is at the bottom. The box just
above Bi has to be one of Bi+1, . . . , Bn – let this box be Bk (note that Bk must satisfy
the above criteria). Also note that none of the boxes from Bi+1, . . . , Bk−1 can come
above Bk. So,

T [i] = hi + max
k=i+1,...,n

T [k],

where the maximum is taken over only those values of k for which lk < li.

5. [KT-Chapter6] Suppose it is nearing the end of the semester and you are taking n
courses, each with a final project that still has to be done. Each project will be graded
on the following scale: it will be assigned an integer number on a scale of 1 to g ≥ 1,
higher numbers being better grades. Your goal, of course, is to maximize your average
grade on the n projects. Now, you have a total of H > n hours in which to work on
the n projects cumulatively, and you want to decide how to divide up this time. For
simplicity, assume H is a positive integer, and you will spend an integer number of
hours on each project. So as to figure out how best to divide up your time, you have
come up with a set of functions {fi : i = 1, 2, . . . , n} (rough estimates, of course) for
each of your n courses; if you spend h ≤ H hours on the project for course i, you?ll get
a grade of fi(h). (You may assume that the functions fi are non-decreasing: if h < h′

then fi(h) ≤ fi(h
′).) So the problem is: given these functions {fi}, decide how many

hours to spend on each project (in integer values only) so that your average grade,
as computed according to the fi, is as large as possible. In order to be efficient, the
running time of your algorithm should be polynomial in n, g, and H; none of these
quantities should appear as an exponent in your running time.

Solution: Define a table T [h, i] which gives the max expected grade for projects
i, . . . , n provided you have only h hours. Now, it is easy to check that

T [h, i] = max
h′=0,...,h

fi(h
′) + T [h− h′, i + 1].

2


