
CSL356 Aug 18, 19, 21

TUTORIAL SHEET 3

1. You are given a set of intervals on a line segment. You wish to color these segments
such that no two overlapping segments get the same color. Devise a greedy algorithm
for coloring the intervals which uses as few colors as possible.

Solution: For point p, let Cp denote the number of intervals containing p. Clearly,
one needs at least Cp colors. Therefore, C, defined as, maxp Cp is a lower bound on this
minimum number of colors. Now, we show how to color the intervals using C colors
using a greedy algorithm.

Order the intervals in increasing order of their starting points – let this ordering be
I1, I2, . . . , In. Consider the intervals in this ordering. Suppose we have already colored
I1, . . . , Ik. Now, we look at Ik+1. The intervals among {I1, . . . , Ik} which overlap with
Ik+1 must contain the starting point of Ik+1, and so, there can be at most C − 1 such
intervals. Thus, if we have C colors, then we can color Ik+1 with one of the unused
colors.

2. Consider the problem of making change for n rupees using the fewest number of coins.
Suppose that the available coins are in denominations that are powers of c, i.e., the
denominations are c0, c1, . . . , ck for some integer c > 1 and k ≥ 1. Show that the
following greedy algorithm always yields an optimal solution – pick as many coins of
denomination ck as possible, then pick as many coins of denomination ck−1 and so on.

Solution: The algorithm is greedy: if M is the remaining money, then find the
largest i such that M ≥ ci, and take a coin of value ci, and iterate with M − ci

remaining money. For the proof, we can proceed by induction. Fix an optimal solution
O. Suppose, M ≥ ci, but M < ci+1. If O also picks a coin of value ci, proceed by
induction. Suppose all the coins picked by O are of value ci−1 or less. Suppose O
picks αj coins of value cj, j ≤ i − 1. First notice that αj < c (why ?). But then∑i−1

j=1 αjc
j < ci, which is a contradiction.

3. [KT-Chapter4] Suppose you are given an undirected graph G, with edge weights that
you may assume are all distinct. G has n vertices and m edges. A particular edge e of
G is specified. Give an algorithm with running time O(m + n) to decide whether e is
contained in a minimum-weight spanning tree of G.

Solution: We need to check if the greedy algorithm will pick e or not. This will
happen only if at the time it considers e, the end-points of e are in different components.
Therefore, consider the graph formed by taking all edges of weight less than the weight
of e. If the end-points of e, lie in different components of this graph, then e has to be
in the minimum spanning tree, otherwise it cannot be in the minimum spanning tree.
Now, note that we can construct such a graph and its connected components can be
found in linear time (depth first search or breadth first search).

1



4. [KT-Chapter4] Suppose you have n video streams that need to be sent, one after
another, over a communication link. Stream i consists of a total of bi bits that need to
be sent, at a constant rate, over a period of ti seconds. You cannot send two streams
at the same time, so you need to determine a schedule for the streams: an order in
which to send them. Whichever order you choose, there cannot be any delays between
the end of one stream and the start of the next. Suppose your schedule starts at time
0 (and therefore ends at time

∑n
i=1 ti whichever order you choose). We assume that

all the values bi and ti are positive integers. Now, because you’re just one user, the
link does not want you taking up too much bandwidth – so it imposes the following
constraint, using a fixed parameter r:

(*) For each natural number t > 0, the total number of bits you send over
the time interval from 0 to t cannot exceed rt.

Note that this constraint is only imposed for time intervals that start at 0, not for time
intervals that start at any other value. We say that a schedule is valid if it satisfies
the constraint (*) imposed by the link. The problem is: Given a set of n streams, each
specified by its number of bits bi and its time duration ti, as well as the link parameter
r, determine whether there exists a valid schedule.

Example. Suppose we have n = 3 streams, with (b1, t1) = (2000, 1), (b2, t2) =
(6000, 2), (b3, t3) = (2000, 1), and suppose the link’s parameter is r = 5000. Then
the schedule that runs the streams in the order 1, 2, 3, is valid, since the constraint
(*) is satisfied:
t = 1: the whole first stream has been sent, and 2000 < 5000 · 1
t = 2 : half the second stream has also been sent, and 2000 + 3000 < 5000 · 2.
Similar calculations hold for t = 3 and t = 4.

(a) Consider the following claim:
Claim: There exists a valid schedule if and only if each stream i satisfies bi ≤ rti.

Decide whether you think the claim is true or false, and give a proof of either the
claim or its negation.

Solution: It is clearly false. For example, if r = 1, and we have two streams
(2, 1) and (1, 1000), then the first stream does not satisfy this condition. But we
can build a valid schedule by ordering the second stream before the first stream.

(b) Give an algorithm that takes a set of n streams, each specified by its number of
bits bi and its time duration ti, as well as the link parameter r, and determines
whether there exists a valid schedule. The running time of your algorithm should
be polynomial in n. You should prove that your algorithm works correctly, and
include a brief analysis of the running time.

Solution: Order the streams in order of bi/ti, and check if this schedule has the
desired property. Prove that there is a valid schedule which orders the stream in
this order (if not, there will be two consecutive streams in this schedule which are
out of order. Then perform an exchange and argue as we did in class.

2



• [KT-Chapter4] Timing circuits are a crucial component of VLSI chips; here’s a simple
model of such a timing circuit. Consider a complete binary tree with n leaves, where
n is a power of two. Each edge e of the tree has an associated length le, which is a
positive number. The distance from the root to a given leaf is the sum of the lengths
of all the edges on the path from the root to the leaf. The root generates a clock signal
which is propagated along the edges to the leaves. We?ll assume that the time it takes
for the signal to reach a given leaf is proportional to the distance from the root to the
leaf. Now, if all leaves do not have the same distance from the root, then the signal
will not reach the leaves at the same time, and this is a big problem: we want the
leaves to be completely synchronized, and all receive the signal at the same time. To
make this happen, we will have to increase the lengths of certain edges, so that all
root-to-leaf paths have the same length (we’re not able to shrink edge lengths). If we
achieve this, then the tree (with its new edge lengths) will be said to have zero skew.
Our goal is to achieve zero skew in a way that keeps the sum of all the edge lengths
as small as possible. Give an algorithm that increases the lengths of certain edges so
that the resulting tree has zero skew, and the total edge length is as small as possible.

Solution: Let the subtrees below the root r be L and R. If the height of L (where
we think of height as maximum length over all root-leaf paths) is ∆ more than that
R, ∆ ≥ 0, then we increase the length of the edge (r, R) by ∆. Now, we repeat the
same process over L and R independently. Again, argue by induction that this greedy
algorithm is optimal – if it does not increase the length of (r, R) edge by ∆, then prove
that we can improve the solution.

3


