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TUTORIAL SHEET 2

1. You are given a line with n points, labeled 1 to n, marked on it. You are also given a
set of intervals I1, . . . , Ik, where interval Ii is of the form [si, ei], 1 ≤ si ≤ ei ≤ n. Find
a set of points X of smallest cardinality such that each interval contains at least one
point from X.

Solution: Sort the intervals in increasing order of ei. Select the first point as the
right end-point of the first interval in this order. Remove all intervals which intersect
with this point, and repeat. Proof of correctness is similar to the interval scheduling
problem discussed in class. If the algorithm picks points p1 < p2 < · · · < pk, and
optimum solution picks points q1 < q2 < · · · , qs, then prove by induction that pi ≥ qi,
and so k ≤ s.

2. You are given two sets X and Y of n positive integers each. You are asked to arrange
the elements in each of the sets X and Y in some order. Let xi be the ith element
of X in this order, and define yi similarly. Your goal is to arrange them such that
Πn
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n is maximized. Give an efficient algorithm to solve this
problem. Prove correctness of your algorithm.

Solution: Arrange the elements of X in decreasing order of xi values – let this
ordering be 1, 2, . . . , n. Do the same for Y , and let the ordering be 1, 2, . . . , n. These
are the orderings of X and Y produced by the greedy algorithm. You can always
assume that the optimum solution orders X as 1, . . . , n as well. Now if it does not
order Y as 1, . . . , n, then there must be two consecutive elements in the ordering of Y ,
say i1, i2, such that i1 > i2. Now show that by reversing the ordering, you get a better
solution. And then argue as done in class: we reduce the number of inversions with
respect to our solution.

3. Suppose you want to go from city A to city B on a long highway. Once you fill your
car tank to full capacity, it can travel D kilometres. There are several locations on the
highway which have petrol pumps. Assume that there is a petrol pump at the start of
the highway, and every stretch of length D on the highway has a location with a petrol
pump. Given the location of these petrol pumps, devise a strategy for traveling from
A to B so that you will have to make as few stops for filling petrol as possible.

Solution: Solution is again a greedy algorithm. Let p be the last petrol station at
which we filled petrol. Look at the segment of length D with left end-point at p, and
choose the next petrol station as the last one in this segment, and so on. Again, the
proof is like Question 1 above: if the algorithm fills petrol at p1, . . . , pk (from left to
right), and optimum does this at q1, . . . , qs, then pi ≥ qi.
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Another way of thinking about this problem is to reduce it to Problem 1 above: for
each petrol station, draw an interval of length D with this petrol station as its right
end-point.

4. [KT Chapter 4] Given a list of n natural numbers d1, d2, . . . , dn, show how to decide
in polynomial time whether there exists an undirected graph G = (V, E) whose node
degrees are precisely the numbers d1, . . . , dn. (That is, if V = {v1, . . . , vn}, then the
degree of vi should be exactly di.) G should not contain multiple edges between the
same pair of nodes, or “loop” edges with both endpoints equal to the same node.

Solution: If all the di are 0, then we know that there is such a graph: the graph
has n vertices and no edges. So assume this is not the case. Sort the di in decreasing
order: d1 ≥ d2 ≥ . . . ≥ dn. Now argue that there is a graph with degree sequence
(d1, . . . , dn) if and only if there is a graph (on n − 1 vertices) with degree sequence
(d2 − 1, d3 − 1, . . . , dk − 1, dk+1, . . . , dn), where k = d1. In other words, we are saying
that if a graph with sequence (d1, . . . , dn) exists, then we can assume that the highest
degree vertex (of degree d1) has edges to the next d1 highest degree vertices. Let us
see why. One direction of the proof is easy: if there is a graph G with degree sequence
(d2 − 1, d3 − 1, . . . , dk − 1, dk+1, . . . , dn), then there is a graph with degree sequence
(d1, . . . , dn): add a new vertex to G which has edges to the vertices with degrees
d2 − 1, d3 − 1, . . . , dk − 1. Let us now prove the reverse (and the more non-trivial
direction of the proof). Suppose there is a graph G with degree sequence (d1, . . . , dn).
Let vi be the vertex with degree di. If v1 has edges to v2, . . . , vk in G, then we are done
– just remove v1 and you have the graph with the desired degree sequence. So assume
there is an index i, 2 ≤ i ≤ k such that (v1, vi) is not an edge. Since degree of v1 is k
(=d1), there must be an index j > k such that (v1, vj) is an edge. Since degree of vi is
at least that of vj, there must be a vertex vk such that (vi, vk) is an edge, but (vj, vk)
is not an edge. Now, in G, we remove the edges (v1, vj) and (vi, vk), and add the edges
(v1, vi) and (vj, vk). Note that this does not change the degree of any vertex, but now,
we have increased the number of edges from v1 to the vertices in the set {v2, . . . , vk}.
Repeat this process till v1 has edges to {v2, . . . , vk}.
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