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TUTORIAL SHEET 10

1. Suppose you have algorithm A which given a graph G and a number k , outputs YES
iff G has a vertex cover of size at most k. Assuming that A runs in polynomial time,
show that you can find a vertex cover of minimum size in polynomial time.

Solution: First, we can easily find the size of the minimum vertex cover – call it
k?. Consider an edge u, v. Any solution of size k∗ must pick either u or v. In other
words, either G − u or G − v should have a vertex cover of size k∗ − 1. Thus, here is
a recursive algorithm A which given a graph H and a number k, either ouputs NO or
outputs a vertex cover of size k. The algorithm A(H, k), where k = 1, simply checks if
there is a single vertex in H which is a vertex cover. If so, it just returns this vertex,
otherwise outputs NO. For k > 1: let (u, v) be an edge in H. Then we recursively run
A(H−u, k−1) and A(H−v, k−1). If the answer is NO in both cases, we return NO.
Otherwise say A(H − u, k − 1) returns a set S of size k − 1 which is a vertex cover of
H − u. Then, A(H, k) returns S ∪ {u} (the other case for H − v is similar). Finally,
we run A on G, k∗.

2. The directed Hamiltonian Cycle Problem is as follows: given a directed graph G, is
there a cycle which contains all the vertices ? Suppose you have a polynomial time
algorithm for this problem. Show that you can also find such a cycle (if it exists) in
polynomial time.

Solution: Suppose G is Hamiltonian. Let C be any Hamiltonian cycle in G. Then, if
we remove any edge not in C, the resulting graph will still be Hamiltonian. Thus, we
get the following algorithm (let A denote the algorithm which given a graph, decides
whether it is Hamiltonian or not): first run A on G to check if G is Hamiltonian or
not. Assume G is Hamiltonian. While G has more than n edges, find an edge e in G
such that A(G − e) returns true. As we argued above, there must exist such an edge
– so we can try each edge in G and see if A(G − e) is true or not. Let e be such an
edge. Then, we remove e, and repeat this process. Finally, when G has only n edges,
these must form a Hamiltonian cycle.

3. The undirected Hamiltonian Cycle Problem can be defined similarly as above. The
undirected Hamiltonian Path problem is as follows: given an undirected graph G, is
there a path which contains all the vertices ? Show that the undirected Hamiltonian
path is polynomial time reducible to the undirected Hamiltonian Cycle problem.

Solution: Let I be an input to the Hamiltonian path problem. Note that I consists of
an undirected graph G. We need to produce a graph G′ such that G has a Hamiltonian
path if and only if G′ has a Hamiltonian cycle. We proceed as follows: add a new vertex
v to the graph G and add edges between v and every vertex in G – call this graph
G′. Now if P is a Hamiltonian path in G starting at vertex s and ending at t, then
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v, s, P, t, v is a Hamiltonian cycle in G′. Conversely, if C is a Hamiltonian cycle in G′,
then removing the vertex v from C gives a Hamiltonian path in G.

4. Show that the undirected Hamiltonian cycle problem is reducible to the directed Hamil-
tonian cycle problem. Show that the directed Hamiltonian cycle problem is reducible
to the undirected Hamiltonian cycle problem.

Solution: We first reduce the undirected Hamiltonian cycle problem to the directed
Hamiltonian cycle problem. Let G be an undirected graph, which is an input to the
undirected Hamiltonian cycle problem. We need to produce a directed graph G′ (in
polynomial time) such that G has a Hamiltonian cycle if and only if G′ has a (directed)
Hamiltonian cycle. We construct G′ by replacing each edge in G by two directed edges
(going in opposite direction). It is easy to check that this reduction has the desired
property.

The reverse reduction is more tricky. Let G = (V,E) be a directed graph, and from
this we have to produce a graph G′ = (V ′, E ′) (in polynomial time) such that G has a
Hamiltonian cycle if and only if G′ has a Hamiltonian cycle. For every vertex v ∈ G,
G′ has three vertices - v′, v′′, v′′′ with edges (v′, v′′), (v′′, v′′′). For every directed edge
(u, v) in G, we have the edge (u′′′, v′) in G′. This completes the description of G′.
Now suppose G has a Hamiltonian cycle: v1, v2, . . . , vn. Then v′1, v

′′
1 , v
′′′
1 , v

′
2, v
′′
2 , v
′′′
2 , . . .

is a Hamiltonian cycle in G′. Now, suppose G′ has a Hamiltonian cycle. Since each
of the vertices v′′i has degree 2, they must be preceded by v′i and succeeded by v′′′i
in this cycle (or the other way round). Therefore, if the vertices v′′i appear in the
cycle C in the order v′′1 , v

′′
2 , . . . , v

′′
n, then it must be the case that the cycle looks like

v′1, v
′′
1 , v
′′′
1 , v

′
2, v
′′
2 , v
′′′
2 , v

′
3, . . ., and so v1, v2, . . . , vn, or vn, vn−1, . . . , v1 is a directed cycle

in G.
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