
CSL356 Aug 4,5,7

TUTORIAL SHEET 1

1. Given two positive numbers a and b, use Euclid’s algorithm to find integers s, t such
that s · a + t · b = GCD(a, b). Prove the correctness of your algorithm by induction.
Solution: We use induction. We we call GCD(a, b), and assuming a ≥ b, two cases
arise: (i) b divides a: if a = αb, then s = 1, t = (1 − α), (ii) b does not divide a:
let r denote the remainder when a is divided by b. By induction/recursion, there are
constants s′, t′ such that s′b+t′r = GCD(b, r) = GCD(a, b). Now substitute r = a−αb
for some positive integer α, to find the desired s and t.

2. (KT-Chapter 1) Decide whether the following statement is true or false: “In every
instance of the stable matching problem, there is a stable matching containing a pair
(m,w) such that m is ranked first in the preference list for w, and w is ranked first in
the preference list of m”.
Solution: There may not even exist such a matching. For example suppose there
are two men m1,m2 and two women w1, w2. The list of m1 is w1, w2, and that of m2

is w2, w1. The list of w1 is m2,m1 and that of w2 is m1,m2.

3. Give an instance of the stable matching problem for which the algorithm discussed in
class takes Ω(n2) time.

Solution: The men have identical rankings of all women (the ranking list of women
can be arbitrary.

4. (KT-Chapter 1) Gale and Shapley published their paper on the stable marriage problem
in 1962; but a version of their algorithm had already been in use for ten years by the
National Resident Matching Program, for the problem of assigning medical residents
to hospitals.

Basically, the situation was the following. There were m hospitals, each with a certain
number of available positions for hiring residents. There were n medical students
graduating in a given year, each interested in joining one of the hospitals. Each hospital
had a ranking of the students in order of preference, and each student had a ranking
of the hospitals in order of preference. We will assume that there were more students
graduating than there were slots available in the m hospitals. The interest, naturally,
was in finding a way of assigning each student to at most one hospital, in such a way
that all available positions in all hospitals were filled. (Since we are assuming a surplus
of students, there would be some students who do not get assigned to any hospital.)
We say that an assignment of students to hospitals is stable if neither of the following
situations arises.

– First type of instability: There are students s and s′, and a hospital h, so that
(i) s is assigned to h, (ii) s′ is unassigned, and (iii) h prefers s′ to s.

1



– Second type of instability: There are students s and s′, and hospitals h and
h′, so that (i) s is assigned to h and s′ is assigned to h′, (ii) h prefers s′ to s, and
s′ prefers h to h′.

So we basically have the stable marriage problem, except that (i) hospitals generally
want more than one resident, and (ii) there is a surplus of medical students. Show
that there is always a stable assignment of students to hospitals, and give an efficient
algorithm to find one. The input size is θ(mn); ideally, you would like to find an
algorithm with this running time.
Solution: The algorithm is similar to the stable matching algorithm. The hospitals
propose to the candidates in order of preference. A candidate, if not already assigned or
assigned to a less preferable hospital, accepts the proposal; otherwise rejects it. There
can be at most mn proposals, and so we are done. Check that all of the operations
can be implemented using arrays.

A common pitfall is that if candidates propose to hospitals, then hospitals need to
check if they have a less preferable candidate. Since a hospital can have large number
of positions, it is not clear how to perform this operation in constant time.

5. (KT-Chapter 4) Let us consider a long, quiet country road with houses scattered very
sparsely along it. (We can picture the road as a long line segment, with an eastern
endpoint and a western endpoint.) Further, let’s suppose the residents of all these
houses are avid cell phone users. You want to place cell phone base stations at certain
points along the road, so that every house is within 4 kilometers of one of the base
stations. Give an efficient algorithm that achieves this goal, using as few base stations
as possible. Prove the correctness of your algorithm.
Solution: There is a simple greedy algorithm here. Let h denote the left-most
house. Then we place a base station 4km to the right of h. Now remove all houses
which are covered by this base station, and repeat. It is easy to show that if the
algorithm locates base stations at b1, . . . , bk, and some other algorithm (which could
be the optimal algorithm) places base stations at b′1, . . . , b

′
k′ (from left to right), then

b1 ≥ b′1, b2 ≥ b′2, and so on. Therefore k ≤ k′.

6. (KT-Chapter 4) Consider the following variation on the Interval Scheduling Problem
from lecture. You have a processor that can operate 24 hours a day, every day. People
submit requests to run daily jobs on the processor. Each such job comes with a start
time and an end time; if the job is accepted to run on the processor, it must run
continuously, every day, for the period between its start and end times. (Note that
certain jobs can begin before midnight and end after midnight; this makes for a type
of situation different from what we saw in the Interval Scheduling Problem.)

Given a list of n such jobs, your goal is to accept as many jobs as possible (regardless
of their length), subject to the constraint that the processor can run at most one job
at any given point in time. Provide an algorithm to do this with a running time that
is polynomial in n, the number of jobs. You may assume for simplicity that no two
jobs have the same start or end times.

2



Example: Consider the following four jobs, specified by (start-time, end-time) pairs:
(6 pm, 6 am), (9 pm, 4 am), (3 am, 2 pm), (1 pm, 7 pm). The unique solution would be
to pick the two jobs (9 pm, 4 am) and (1 pm, 7 pm), which can be scheduled without
overlapping.
Solution: This is like the interval scheduling problem discussed in class except that
jobs are periodic. One way of thinking about this is that time is not like an interval, but
is a circle (think of it as the circle in a clock). Now, each job corresponds to an interval
in this circle. Now, suppose we knew the job which are being done at midnight – call
this j. Then, we could remove all jobs overlapping with j, and solve the remaining
problem. The remaining problem looks like the interval scheduling problem done in
class (and so can be solved using a greedy algorithm). However, we do not know the
job j. One way out is to try out all possibilities for such a job: for each job which
contains the mid-night time, we select it and solve the resulting interval scheduling
problem. Finally, we pick the best such solution.

3


