
Constant Factor Approximation Algorithm for

the Knapsack Median Problem

Amit Kumar ∗

Abstract

We give a constant factor approximation algorithm for

the following generalization of the k-median problem. We

are given a set of clients and facilities in a metric space.

Each facility has a facility opening cost, and we are also

given a budget B. The objective is to open a subset of

facilities of total cost at most B, and minimize the total

connection cost of the clients. This settles an open problem

of Krishnaswamy-Kumar-Nagarajan-Sabharwal-Saha. The

natural linear programming relaxation for this problem

has unbounded integrality gap. Our algorithm strengthens

this relaxation by adding constraints which stipulate which

facilities a client can get assigned to. We show that after

suitably modifying a fractional solution, one can get rich

structural properties which allow us to get the desired

approximation ratio.

1 Problem Definition

The problem of locating facilities to service a set of
demands has been widely studied in computer science
and operations research communities [LMW98, MF90].
The trade-off involved in such problems is the following
– we would like to open as few facilities as possible, but
the clients should not be located too far from the nearest
facility. The k-median problem balances the two costs
as follows : we are given a set D of clients and a set F
of potential facilities lying in a metric space. The goal
is to open at most k facilities in F so that the average
distance traveled by a client in D to the nearest open
facility is minimized.

The k-median problem is one of the most well-
studied facility location problems with several con-
stant factor approximation algorithms [AGK+01, CG99,
CGTS02, JV01]. Motivated by applications in con-
tent distribution networks, Hajiaghayi et al. [HKK10]
considered the following generalization of the k-median
problem, which they called the Red-Blue Median Prob-
lem – the set of facilities are partitioned into two sets
– F1 and F2, and we are given two parameters k1 and
k2. The goal is to open at most k1 facilities of F1 and

∗Dept. of Computer Science and Engg., IIT Delhi, India-

110016, email : amitk@cse.iitd.ac.in

k2 facilities of F2 such that the total connection cost
of the clients is minimized. They gave a constant fac-
tor approximation algorithm for this problem. Krish-
naswamy et al. [KKN+11] generalized this result to
the case of arbitrary number of partitions of F . In fact,
their result holds even when the set of open facilities
is required to be an independent set in a matroid (the
matroid median problem). They show that the natu-
ral linear programming relaxation for this problem has
constant integrality gap.

In this paper, we consider the following problem. As
in the k-median problem, we are given a set of clients
D and facilities F in a metric space. Each client j has
an associated demand dj , each facility i has a facility
opening cost fi and we are given a budget B. The goal
is to open a set of facilities such that their total opening
cost is at most B, and minimize the total connection
cost of the clients, i.e.,

∑

j∈D
djc(i(j), j), where i(j)

is the facility to which j gets assigned, and c denotes
the distance in the underlying metric space. We call
this the Knapsack Median Problem. Clearly, the k-
median problem is a special case of this problem where
all facilities costs are one, and B = k. In this paper,
we give a constant factor approximation algorithm for
the Knapsack Median Problem. This answers an open
question posed by [KKN+11].

The main difficulty here lies in the fact the natural
LP relaxation has unbounded integrality gap. This
happens even when all facility costs are at most B (the
natural LP relaxation for the knapsack problem also has
unbounded integrality gap, but it becomes a constant
if we remove all items of size more than the knapsack
capacity). Consider the LP relaxation given in Section 3
where x(i, j) is 1 if client j is assigned to facility i, and
yi is 1 if facility i gets opened. The following integrality
gap example was given by Charikar and Guha [CG05] :
there are two facilities of cost 1 and B respectively, and
two clients (with unit demand) co-located with the two
facilities respectively. The distance between the two
facilities is a large number D. Clearly, any integral
solution can open only one facility, and so must pay
D, whereas the optimal fractional solution can open the
expensive facility to an extent of 1− 1

B , and so the total



cost will be D
B . Krishnaswamy et al. [KKN+11] showed

that the integrality gap remains unbounded even if we
strengthen the LP relaxation by adding knapsack-cover
inequalities.

One idea of getting around this problem would be
to augment the LP relaxation with more information.
Suppose we guess the maximum distance between a
client and the facility to which it gets assigned in
an optimal solution – call this value L. In the LP
relaxation, we can set x(i, j) to 0 if c(i, j) > L. This
would take care of the above integrality gap example –
if we set L to be a value less than D, the LP becomes
infeasible, and if L > D, we already have D as a
lower bound because we have guessed that at least one
demand has connection cost at least D in the optimal
solution. But now, consider the same example as above
where we have D clients located at each of the two
facilities respectively. Now, any integral solution will
have cost at least D2, and even if we plug in L > D,

the LP can get away with value D2

B only. The lower
bound of D is also not enough. Therefore, we need a
more subtle way of coming up with a lower bound which
looks at groups of clients rather than a single client. We
show that, based on a guess of the value of the optimal
solution, one can come up with lower bounds Uj for
each client j, and set x(i, j) to 0 in the LP relaxation
if d(i, j) > Uj. Further these lower bounds are better
than what one can obtain by just looking at client j
alone. Our rounding algorithm, which closely follows
that of Krishnaswamy et al. [KKN+11], shows that the
natural LP relaxation (where we use the bounds Uj as
mentioned) has constant integrality gap except for one
group of demands. Our algorithm assigns this group
of demands to a single open facility and the connection
cost can be bounded by the value of the optimal solution
(if our guess for this value is correct). Note that the
actual constant in the approximation ratio turns out
to be large, and we have not made an attempt to get
the optimal value of this constant by balancing various
parameters.

1.1 Related Work
The k-median problem has been extensively studied

in the past and several constant factor approximation
algorithms are known for this problem. Lin and Vit-
ter [LV92] gave a constant factor approximation algo-
rithm for this problem while opening at most k(1 + ε)
facilities for an arbitrarily small positive constant ε,
even when distances do not obey triangle inequality.
Assuming that distances obey triangle inequality, the
first constant factor approximation algorithm was given
by Charikar et al. [CGTS02]. Jain and Vazirani [JV01]
gave a primal-dual constant factor approximation algo-

rithm for this problem. Their algorithm first gives a
primal-dual algorithm for the facility location problem
which has the Lagrange multiplier preserving property
(see e.g. [Mes07]). However, their algorithm does not ex-
tend to our problem. Indeed, if we use their approach,
then we would get two solutions – one of these would
open facilities which cost less than the budget B and
the other one would spend more than B. Since facilities
have non-uniform costs, the idea of combining these two
solutions using a randomized algorithm does not seem
to work here.

There are several approximation algorithms based
on local search techniques as well [KPR98, AGK+01].
Hajiaghayi et al. [HKK10] used this approach to get a
constant factor approximation algorithm for the case of
red-blue median problem – recall that here there are
two kinds of facilities (red and blue), and for each kind,
we have a bound on the number of facilities that can be
opened. Each operation in these local search algorithms
swaps only one facility at a time. Since facilities have
costs, we may need to open and close multiple facilities
in each operation. It remains a challenge to analyze
such a local search algorithm.

Krishnaswamy et al. [KKN+11] gave a constant
factor approximation algorithm for the matroid median
problem. Here, the set of open facilities should form an
independent set in a given matroid. A natural special
case (and in fact, this captures many of the ideas in
the algorithm) is when the set of facilities is partitioned
into K groups, and we are given an upper bound on the
number of open facilities of each group. They show that
the natural LP relaxation has constant integrality gap.
Their algorithm begins by using ideas inherent in the
algorithm of Charikar et al. [CGTS02], but has more
subtle details. In fact, they also give a constant factor
approximation for the Knapsack Median Problem, but
exceed the budget B by the maximum cost of any
facility. Our rounding algorithm also proceeds along the
same lines as the latter algorithm, but the presence of
the non-uniform bounds Uj allow us to avoid exceeding
the budget B.

There are several bi-criteria approximation algo-
rithms for the Knapsack Median Problem which vi-
olate the budget by (1 + ε)-factor for any ε > 0,
and come within a constant of the total connection
cost [LV92, CG05]. As mentioned above, Krishnaswamy
et al. [KKN+11] also gave a constant factor approxi-
mation algorithm for this problem while violating the
budget by at most the maximum cost of a facility.

1.2 Our Techniques
Consider the natural linear programming relaxation

given in Section 3. As explained in the previous section,



the integrality gap of this relaxation is unbounded.
Now, suppose we know (up to a constant factor) the
value of the optimal solution – call this OPT (we can
do this by binary search). Based on this guess, we can
come up with a bound Uj for each client j as follows.
Suppose j is a assigned to a facility i where c(i, j) is at
least a parameter Uj . Then any other client j′ must be
assigned to a facility i′ satisfying c(i′, j′) ≥ Uj − c(j, j′)
distance away from it (otherwise we can improve the
connection cost of j). Hence, we can deduce that
∑

j′∈D
dj′ max(0, Uj − c(j, j′)) ≤ OPT. We set Uj to

be the highest value which satisfies this condition. In
the LP relaxation, we set x(i, j) to 0 if c(i, j) > Uj .

We now briefly describe the rounding algorithm. It
proceeds along the same lines as that of Krishnaswamy
et al. [KKN+11], but we give the details for the sake
of completeness. Consider a fractional solution (x, y)
to the LP relaxation. For a client j, the fractional
solution assigns it fractionally to several facilities. Let
∆(j) =

∑

i∈F
c(i, j)x(i, j) denote the average distance

to the facilities to which j gets fractionally assigned.
Using the ideas in [CGTS02], we can assume (with
constant loss in approximation ratio) that the distance
between two different clients j and j′ is at least a large
constant times max(∆(j), ∆(j′)). This is achieved by
merging several clients into a new client whose demand
is the sum of demands of these clients. Let B(j) denote
the ball of radius 2∆(j) around client j. It is easy to
check by a simple averaging argument that at least half
of demand of j is assigned to facilities in B(j). Also,
these balls are disjoint (in fact, far from each other).

For each client j, we define another ball E(j) –
it is the set of facilities which are closer to j than
to other clients. Clearly, the balls E(j) are disjoint,
and it is easy to check that B(j) is a subset of E(j)
(see Figure 1). Krishnaswamy et al. [KKN+11] showed
that, up to a constant loss in approximation ratio,
a fractional solution can be massaged to have the
following structure :

• A client j is fractionally assigned to facilities in
E(j) and the facilities in at most one of the balls
B(j′), for some client j′.

• We can construct a directed graph G as follows –
the set of vertices is same as the set of clients, and
we have an arc (j, j′) if j′ is fractionally assigned
to a facility in B(j′) . This graph has the nice
property that each of its components is a directed
star where the root is either a single vertex or a
2-cycle.

Once we have established these properties, we write
a new linear programming relaxation which enforces
such properties. This is similar to the new linear

programming relaxation in [KKN+11]. For the case
of the matroid median problem, they showed that this
new relaxation is totally unimodular and so they could
directly recover a good integral solution from such a
relaxation. For the case of Knapsack Median Problem,
they used the iterative rounding method. They showed
that as long as there are more than two facilities, one
can always find a facility which is integrally open or
closed in a vertex solution. When there are only two
facilities, they just open both the facilities thus violating
the budget constraint. For us, this is precisely where the
presence of the bounds Uj helps. However, instead of
giving an algorithm based on iterative rounding (which
would require finding several vertex solutions), we show
that one can directly argue about a vertex solution
to this new LP relaxation. We show that in a vertex
solution, all facilities are integrally open except for the
facilities in the set E(j) for at most two special clients j.
One can easily account for the connection cost of all the
clients except for these special clients. We connect these
special clients to any open facility to which they were
fractionally assigned in the LP solution. Now, note that
such a client was perhaps obtained by merging several
clients of D in the beginning of the rounding procedure,
and so the connection cost of j really corresponds to
the connection cost of several clients. We would like to
bound the connection cost of all of these clients by the
optimal value. This is where we use the property of the
upper bounds Uj′ for clients j′ ∈ D.

In Section 2, we formally define the problem. In
Section 3, we give the LP relaxation and define the
bounds Uj for each client j. We first describe how to
massage a fractional solution to make it well-structured
in Section 4.1 – as mentioned earlier, this is same
as the algorithm of Krishnaswamy et al. [KKN+11],
though the notation is slightly different. In Section 4.2,
we write a new LP relaxation, which is again based
on [KKN+11], which actually enforces such a structure.
Then we show that any vertex solution to this relaxation
is almost integral, and so one can get a constant factor
approximation algorithm.

2 Preliminaries

We are given a set of clients D and a set of potential
facilities F . Further, these points lie in a metric space,
where we denote the distance between two points i and
j by c(i, j). Each facility i has a facility opening cost
fi, and we are given a budget B. Each client j ∈ D
has an associated value dj , which denotes the amount
of demand it has. Therefore, an instance I can be
described by a tuple (D,F , c, f, d). A solution opens a
subset of facilities F ′ of total cost at most the budget B,
and assigns each client in D to the closest open facility



(in the set F ′). The objective is to minimize the total
connection cost, i.e., min

∑

j∈D
dj · c(i(j), j), where i(j)

is the facility to which j gets assigned. In rest of the
paper, we shall use i to refer to a facility and j to refer
to a client.

3 LP Relaxation

Fix an instance I = (D,F , c, f, d). We have the
following LP relaxation, which we call LP(I). Here,
x(i, j) is 1 iff client j is assigned to facility i, and yi is
1 iff facility i is opened. The first constraint states that
a client must be assigned to a facility, and the second
constraint states that if a client is assigned to a facility,
then the facility must be open. The third constraint
requires that we do not exceed the budget B.

min
∑

j∈D

dj ·
∑

i∈F

c(i, j)x(i, j)

∑

i∈F

x(i, j) = 1 for all j ∈ D

x(i, j) ≤ yi for all i ∈ F , j ∈ D
∑

i∈F

fiyi ≤ B

x(i, j), yi ≥ 0

As argued above, this relaxation may have un-
bounded integrality gap. So we need to strengthen the
relaxation. Suppose we know the value of the optimal
solution – call it OPT(I) (we can guess this up to a fac-
tor (1 + ε) for an arbitrarily small constant ε by binary
search). Among all the open facilities in the optimal
solution, a client should be assigned to the closest one.
So, if a client j is assigned to a facility i, then any
other client j′ must be assigned to a facility i′ such that
c(i′, j′) ≥ c(i, j) − c(j, j′) away from j′. Indeed, other-
wise we might as well assign j to i′ and reduce the total
connection cost. So, the cost of the solution must be
at least

∑

j′∈D
dj′ max(0, c(i, j) − c(j, j′)). If this value

turns out to be greater than OPT(I), we know that the
optimal solution cannot assign j to i. Thus, for each
client j, we define a bound Uj as the maximum value
for which

∑

j′∈D

dj′ max(0, Uj − c(j, j′)) ≤ OPT(I).

For a client j, we define the set of allowable fa-
cilities, A(j), as the set of those facilities i such that
c(i, j) ≤ Uj . Hence, we can make the following modi-
fication to LP(I) : we set x(i, j) to 0 if i /∈ A(j). We
emphasize that even with this modification, the inte-
grality gap of the LP could be unbounded. However, if

our guess of OPT(I) is correct, then the cost of the solu-
tion produced by our algorithm can be bounded by the
LP value except for one group of demands. For these
group of clients, we show that their connection cost is
at most a constant times

∑

j′∈D
dj′ max(0, Uj − c(j, j′))

for some client j, and hence, is at most O(OPT(I)).

4 Rounding a fractional solution

We start with a fractional solution (x, y) to LP(I).
There are several conceptual steps in the rounding
algorithm. First, we modify the fractional solution
through a sequence of steps to a new fractional solution
which has a much cleaner structure – as mentioned
earlier, this is same as that of [KKN+11]. Using this
structure, we write a new LP relaxation for the problem.
Finally, we show that a vertex solution of this new LP
relaxation turns out to have some nice properties which
can be exploited for rounding it to an integral solution.

4.1 Modifying the LP solution
(i) Consolidating clients : In this step (which is also
used by Charikar et al. [CGTS02]), we shall merge some
of the clients into a single client. We shall do this
formally by updating the demands dj of the clients.

The new demand of a client j will be denoted by d
(1)
j .

Initially, d
(1)
j = dj for all j.

For a client j, let ∆(j) denote
∑

i c(i, j)x(i, j), the
fractional distance traveled by j. Consider the clients in
increasing order of the ∆(j) values – let this ordering be
j1, . . . , jn. When we consider jl, if there exists a client

ju, u < l, such that d
(1)
ju

> 0 and c(jl, ju) ≤ 4∆(jl), then

we increase d
(1)
ju

by djl
, and set d

(1)
jl

to 0. In other words,

we move jl to ju and merge the two demands. Let D(1)

denote the new set of clients with non-zero demands.
The following observations are easy to check.

Fact 4.1. [CGTS02] If j1, j2 ∈ D(1), then c(j1, j2) ≥
4 max(∆(j1), ∆(j2)). Further,

∑

j∈D(1)

d
(1)
j ∆(j) ≤

∑

j∈D

dj∆(j).

(ii) Consolidating facilities : For a client j ∈ D(1),
define B(j) as the ball of radius 2∆(j) around j.
Fact 4.1 shows that these balls are disjoint. It is also
easy to see, using a simple averaging argument, that

∑

i∈B(j)

yi ≥ 1/2.

We define a new solution (x(1), y(1)) as follows. For each
client j, we perform the following steps : let i⋆ be the
cheapest facility in B(j). We open a new facility cen(j)



at the same location as j. The facility opening cost of
cen(j) is same as that of i⋆. We close all the facilities in

B(j), and set y
(1)
cen(j) to be equal to min(1,

∑

i∈B(j) yi).

In other words, we are moving all the facilities in B(j)
to cen(j). It is easy to check that the total facility
opening cost does not increase. We need to change
the variables x(i′, j′) as well. We set x(1)(i′, j′) to 0
if i′ ∈ B(j) \ {cen(j)} for some j, and correspondingly
increase x(1)(cen(j), j′). In other words, for every pair
of clients j and j′, we define

x(1)(cen(j), j′) =
∑

i∈B(j)

x(i, j).

Thus, the only open facility inside a ball B(j) is the
facility cen(j). Let F (1) be the set of facilities with non-

zero y
(1)
i values – these will either be cen(j) for some

client j, or the facilities in F which did not lie in any of
the balls B(j). Again, it is easy to check the following
fact.

Fact 4.2. For any j ∈ D(1), y
(1)
cen(j) ≥ 1/2. Further,

if x(i, j) > 0 for some i ∈ B(j′), j′ ∈ D(1), then
c(cen(j′), j) ≤ 2c(i, j). Hence, the cost of the solution
(x(1), y(1)) is at most twice that of (x, y).

Proof: Fix a client j. The connection cost of j to
facilities in B(j) only decreases because c(j, cen(j)) = 0.
Now, suppose j was assigned to a facility i ∈ B(j′) in the
solution (x, y). In the new solution, it will get assigned
by the same extent to cen(j′). Observe that

c(cen(j′), j) ≤ c(i, j′) + c(i, j).

Now, c(i, j′) ≤ 2∆(j′), and

c(i, j) ≥ c(j, j′) − c(i, j′)
Fact (4.1)

≥ 4∆(j′) − 2∆(j′)

= 2∆(j′).

So, c(i, j′) ≤ c(i, j), and hence, c(cen(j′), j) ≤ 2c(i, j).

(iii) Updating the assignment : We further
simplify the assignment of clients to facilities. This will
create a new solution (x(2), y(2)), where y(2) will be same
as y(1). For a client j ∈ D(1), let near(j) be the closest
client in the set D(1)\{j}. Let E(j) be the ball of radius
c(j, near(j))/2 around j. Note that by definition, the
balls E(j), j ∈ D(1), are disjoint. Further, B(j) ⊆ E(j)
because the radius of B(j) is 2∆(j), whereas that of
E(j) is at least 2∆(j) (Fact 4.1). We now modify the
solution such that a client j is fractionally assigned to

j

B(j)

E(j)

cen(j′)

cen(j′′)

Figure 1: The dark circle around j denotes B(j), and
the lighter one denotes E(j). The arrows indicate
fractional assignment of j to the facilities. The arrow
pointing back to j denotes fractional assignment of j to
cen(j).

facilities in either E(j) or cen(near(j)). In other words,
if i /∈ E(j), we set x(2)(i, j) = 0 and set

x(2)(cen(near(j)), j) =
∑

i/∈E(j)

x(1)(i, j).

Note that this is a feasible solution because ycen(j′) ≥
1/2 for all j′, and at most half of fractional assignment
of j goes outside E(j) (because x(1)(cen(j), j) ≥ 1/2).
Thus, a client j is fractionally assigned to cen(j), some
facilities in E(j) \ B(j), and to at most one facility
outside E(j), namely, cen(near(j)). We shall often refer
to the assignment of j to a facility outside E(j) (right
now, this can be only cen(near(j))) as a long range
assignment. See Figure 1 for a pictorial representation
of this. Again, it is easy to check the following fact.

Fact 4.3. For a client j, if x(1)(i, j) > 0 for some
i /∈ E(j), then c(cen(near(j)), j) ≤ 2c(i, j). Hence, the
cost of (x(2), y(2)) is at most twice that of (x(1), y(1)).

Proof: Suppose i /∈ E(j). Then, c(i, j) ≥
c(cen(near(j)), j)/2.

(iv) Simplifying the long range assignments We
define a new solution (x(3), y(3)) which is initially same
as (x(2), y(2)). Consider the following directed graph G,
which we call the long range assignment graph. The set
of vertices V is same as D(1), and we have a directed
arc from j to j′ if we have long range assignment from j
to cen(j′) (this implies that j′ is the closest client to j).
We change the long range assignments of clients so that
this graph has a simple structure. Since the out-degree
of each vertex in G is at most one, each component of
G is an in-directed tree where the root is either a single
vertex or a 2-cycle (it is possible that the root is a larger
cycle, but we can always break ties while defining the
closest client such that it becomes a 2-cycle). In case



Figure 2: The left figure shows the structure of G – each component is a directed tree with the root being a single
node or a 2-cycle. The right figure shows the structure of G after Step (iv). Each component is a directed star
with the root being a single node or a 2-cycle.

the root is a 2-cycle, we shall call the vertices in it as
pseudo-roots (see Figure 2). For a non (pseudo-)root
vertex v, we denote its parent as parent(v). We now
carry out the following two steps [KKN+11] :

• We traverse each tree in G bottom-up from
leaves to (pseudo-)root, and if we encounter a
pair of nodes u, v, where v = parent(u), such
that v is a not the root or a pseudo-root, and
c(u, v) ≤ 2c(v, parent(v)), then we remove the arc
(v, parent(v)) and add the arc (v, u) (so these two
vertices become a pseudo-root).

• For each component of the graph G, we perform
the following changes. If j is a node which is
not the root (or one of the pseudo-roots), then we
remove the arc (j, parent(j)) and add an arc from
j to the root (or the closer pseudo-root). Notice
that all nodes in this component, except the root
(or the pseudo-roots), become leaves. Thus, each
component is a star where the root is either a single
node or a 2-cycle (right part of Figure 2).

In terms of the actual assignment, if we had an arc
(j, j′) in G, and the new out-going arc from j is (j, j′′),
then we set x(3)(cen(j′), j) to 0 and x(3)(cen(j′′), j)) to
x(2)(cen(j′), j).

Lemma 4.1. Consider a client j, and suppose j′ is
the root or one of the pseudo-roots of the component
containing j. Then, c(cen(j′), j) ≤ 6c(cen(near(j)), j).
Thus, the cost of (x(3), y(3)) is at most 6 times that of
(x(2), y(2)).

Proof: Consider the first set of operations above. We
only introduce 2-cycles here. Further, if we replace an
arc (j, near(j)) by (j, j′), then c(j, j′) ≤ 2c(j, near(j)).
This proves the lemma when j is a pseudo-root.

Now, consider the graph at the end of the first set
of operations. Let j be a vertex which is not a root
or pseudo-root vertex. let r be the root (or the closer

pseudo-root) of the component containing j. In the
path from j to r, the length of the arcs decrease by
a factor of at least 2. So, c(j, r) ≤ 2c(j, parent(j)),
where parent(j) is same as near(j). Now, suppose
this component has another pseudo-root r′. We argued
above that c(r, r′) ≤ 2c(r, near(r)) and so, c(r, r′) ≤
2c(r, j). So, c(j, r′) ≤ c(j, r) + c(r, r′) ≤ 3c(j, r) ≤
6c(j, parent(j)) = 6c(j, near(j)).

Summary : We now summarize the properties of the
solution (x(3), y(3)).

• We have a set of client D(1) and a set of facilities
F (1). For each client j, we have a facility cen(j)

co-located with j, and y
(3)
cen(j) ≥ 1/2.

• The distance between any two clients j and j′ is at
least 4 max(∆(j), ∆(j′).

• For each client j, we have two sets : B(j), the ball
of radius 2∆(j) around j; and E(j), the ball of
radius c(j, near(j))/2 around j, where near(j) is
the closest client to j. Clearly, E(j) contains B(j)
and for two different clients j and j′, E(j) and E(j′)
are disjoint.

• The only (fractionally) open facility in B(j) is
cen(j), and x(3)(cen(j), j) ≥ 1/2. Further, j may
be fractionally assigned to some facilities in E(j) \
B(j), and to at most one other facility outside the
set E(j). The latter facility is of the form cen(j′)
for some client j′ (by a long range assignment) – in
this case, we have an arc (j, j′) in G.

• The directed graph G consists of a set of stars,
where the root of each star is either a single node
or a 2-cycle.

In the initial fractional solution (x, y), a client j
is assigned to a facility in its allowable set A(j) only.
However, the solutions constructed by modifying x
may violate this assumption. We now show that this
condition is still satisfied approximately.



Lemma 4.2. Suppose j is a client in D(1). If
x(3)(i, j) > 0, then there is a facility i′ ∈ A(j) for which
c(i, j) ≤ 24 · c(i′, j).

Proof: Fix a client j. In step (i), we do not change
any assignments of j. In step (ii), Fact 4.2 shows that if
we assign j fractionally to i, c(i, j) ≤ 2c(i′, j), where
i′ ∈ A(j). Fact 4.3 and Lemma 4.1 similarly show
that the same condition holds, but the factor worsens
to 2 × 2 × 6 = 24.

4.2 A new LP formulation
Consider the instance I ′ consisting of clients D(1)

with demands d
(1)
j and facilities F (1). Recall that we

have introduced new facilities, cen(j), j ∈ D(1), and the
the facility opening cost of such a facility is same as that
of the cheapest facility in B(j). Further, for all clients
j ∈ D(1), we remove any facility i ∈ E(j) for which
x(3)(i, j) = 0. If a client j ∈ D(1) has an out-neighbor
in G, we shall denote it by out(j). For a client j, let
comp(j) denote the component of G containing it. For a
component C of G, let R(C) denote the set of (pseudo-
)roots of C – if C has just one root, then R(C) is a
singleton set containing this element; otherwise R(C)
consists of the two pseudo-roots of C. We shall denote
two pseudo-roots of the same component as pseudo-
root pairs. For a component C, let E(R(C)) denote
∪j∈R(C)E(j) – the facilities which belong to E(j), where
j is a root or a pseudo-root of C.
We write a new LP relaxation for the instance I ′ below –
call this relaxation LP′(I ′). Note that this LP relaxation
was also given by Krishnaswamy et al. [KKN+11].

min
∑

j∈D(1)

d
(1)
j





∑

i∈E(j)

c(i, j)yi

+c(j, out(j))



1 −
∑

i∈E(j)

yi







(4.1)

∑

i∈E(j)

yi ≤ 1 ∀j ∈ D(1)(4.2)

∑

i∈E(R(C))

yi ≥ 1 ∀components C of G(4.3)

∑

i

fiyi ≤ B(4.4)

yi ≥ 0 ∀i

Note that for a demand j, the term in the objective
function containing out(j) is present only if j has an
out-neighbor in G. Note that if a component C of

G has only one root j, then constraints (4.2) and
(4.3) corresponding to j imply that these should be
satisfied with equality. The following claim follows from
Facts 4.1, 4.2, 4.3, Lemma 4.1 and the observation that
y(3)) is a feasible solution to LP′(I ′) (with the same cost
as the cost of the solution (x(3), y(3)) for the original LP
relaxation).

Fact 4.4. The optimal value of LP′(I ′) is at most
24 · OPT(LP(I)).

In this section, we shall prove the following theorem.

Theorem 4.1. There is a polynomial time algorithm to
find a (integral) solution to the instance I ′ whose cost
is at most 2700 · OPT(I).

Using the theorem, we get the main result. For a client
j ∈ D(1), let D(j) denote the set of clients in D which
were merged with j in step (i) of the algorithm described
in Section 4.1.

Corollary 4.1. There is a polynomial time algorithm
to find a solution to the instance I of cost at most
2706 · OPT(I).

Proof: Consider the solution S′ to the instance I ′

as guaranteed by Theorem 4.1. If S′ opens a facility
cen(j) for some j ∈ D(1), we open the cheapest facility
in B(j). Clearly, this does not change the facility
opening cost. This may increase the connection cost

by
∑

j∈D(1) d
(1)
j · 2∆(j). We can express this increase in

the cost as

2
∑

j∈D(1)

∑

j′∈D(j)

dj′∆(j) ≤ 2
∑

j′∈D

dj′∆(j′) = 2·OPT(LP(I)).

Now, the clients j′ ∈ D(j) also pay the extra
distance from j′ to j, which is at most dj′ · 4∆(j′). So,
we pay an extra 4 · OPT(LP(I)). The result now follows
from Theorem 4.1.

We now prove Theorem 4.1. First, we state the main
technical lemma which shows that a vertex solution to
LP′(I ′) has nice properties.

Lemma 4.3. Any vertex solution y⋆ to LP′(I ′) has the
following property. There is either a client j⋆ or a
pseudo-root pair (j⋆, j′⋆), such that y⋆

i is either 0 or
1 for all i ∈ E(j), except perhaps when j = j⋆ in the
former case and j = j⋆, j′⋆ in the latter case. Further,
in the latter case the inequality (4.3) for the component
containing this pair is satisfied with equality.

Proof: Fix a vertex solution y⋆. We say that a facility
i is fractionally open in this solution if y⋆

i is strictly



between 0 and 1. We define two sets A and B. The
set A will contain clients or pseudo-root pairs. A client
j gets added to A if

∑

i∈E(j) y⋆
i = 1 and E(j) contains

fractionally open facilities. Similarly, a pseudo-root pair
(j, j′) gets added to A if

∑

i∈E(j) y⋆
i +

∑

i∈E(j′) y⋆
i′ = 1

and both E(j) and E(j′) contains fractionally open
facilities. Note that in either of the two cases, E(j) (or
E(j)∪E(j′)) must contain at least two fractionally open
facilities. Given a client j (or pseudo-root pair (j, j′)) in
A, and a small parameter ε, define an operation Tε(j)
(or Tε((j, j

′))) as follows : there exist two fractionally
open facilities in E(j) (or E(j) ∪ E(j′)) – call these
i1 and i2 respectively. This operation changes y⋆

i1
to

y⋆
i1 + ε and y⋆

i2 to y⋆
i2 − ε. Note that this maintains

feasibility of all constraints for a small enough but
non-zero ε (which could be negative), except perhaps
constraint (4.4) which changes by ε(fi1 − fi2).

The set B contains those clients j for which E(j)
contains a fractionally open facility and j has not been
added to A either as a single element or as part of a
pseudo-root pair. So,

∑

i∈E(j) y⋆
i < 1, and if j is one of

the pseudo-roots of comp(j), then
∑

i∈E(R(comp(j))) y⋆
i >

1. Given a parameter ε′ and a client j ∈ B, define an
operation Tε′(j) as follows : let i be a fractionally open
facility in E(j). Then change y⋆

i to y⋆
i + ε′ – it is easy

to check that for small enough non-zero ε′ (which could
be negative), this maintains feasibility of all constraints
except perhaps (4.4) which changes by ε′fi.

Now suppose A∪B has at least two elements, say j
and j′ (if any these elements is a pseudo-root pair, then
the argument is identical). Then perform the operations
Tε(j) and Tε′(j′) – we can choose ε and ε′, where at
least one of them is non-zero, such that the left hand
side of inequality (4.4) does not change. Also note that
switching the signs of ε and ε′ also does not violate any
of the constraints. This contradicts the fact that we are
at a vertex solution. So, A ∪ B can have cardinality at
most 1. This proves the lemma.

We now prove two useful claims. The first claim
below shows how to handle a client which does not
satisfy the statement of Lemma 4.3.

Claim 4.1. Suppose j is a client in D(1) such that

x(3)(i, j) > 0 for some facility i. Then, d
(1)
j · c(i, j) ≤

250 · OPT(I).

Proof: Consider j and i as above. Lemma 4.2
shows that there is a facility i⋆ ∈ A(j) such that
c(i, j) ≤ 24 · c(i⋆, j). Let D(j) denote the clients in
D which were merged with j. Divide D(j) into two
sets – (i) D1(j) : those clients j′ ∈ D(j) for which
c(j, j′) ≤ c(i⋆, j)/2, and (ii) D2(j) : the remaining

clients in D(j). If j′ ∈ D2(j), then

c(i, j′) ≤ c(j, j′) + c(i, j) ≤ c(j, j′) + 24 · c(i⋆, j)

≤ c(j, j′) + 48 · c(j, j′) ≤ 200 · ∆(j′),

where the last inequality follows because c(j, j′) ≤
4∆(j′) (this is the reason why j′ was merged with j).
Thus, we can pay for the connection cost of clients in
D2(j).

Now, if j′ ∈ D1(j), then observe that c(i⋆, j) ≤
2(c(i⋆, j) − c(j, j′)). Hence,

∑

j′∈D1(j)

dj′ · c(i, j) ≤ 24 ·
∑

j′∈D1(j)

dj′c(i
⋆, j)

≤ 48
∑

j′∈D1(j)

dj′ (c(i
⋆, j) − c(j, j′))

≤ 48 · OPT(I),

where the last inequality follows because c(i⋆, j) ≤ Uj .
This proves the claim.

Claim 4.2. Suppose (j1, j2) is arc in G, and let j′2 be
the pseudo-root other than j2 in this component (if it
exists). Let i ∈ E(j1)∪E(j2). Then c(i, j1) ≤ 9c(j1, j2).

Proof: If i ∈ E(j2), then c(i, j1) ≤ c(i, j2)+c(j1, j2) ≤
c(j1,j2)

2 + c(j1, j2) = 3
2c(j1, j2). The case when i ∈ E(j′2)

follows similarly (using Lemma 4.1).

We are now ready to prove the main theorem.
Proof of Theorem 4.1: Consider a vertex solution
y⋆ to LP′(I ′) with properties as stated in Lemma 4.3.
We first show which facilities to open. We open
all facilities for which y⋆

i = 1. Now, consider the
fractionally open facilities. Lemma 4.3 implies that all
these facilities are either in E(j⋆) for some client j⋆

or in E(j⋆) ∪ E(j′⋆) for some pseudo-root pair (j, j′).
Suppose the first case happens. If

∑

i∈E(j⋆) y⋆
i = 1,

then open the cheapest facility in E(j) – note that this
does not increase the budget constraint. Similarly, if
the second case happens, then open the cheapest facility
in E(j⋆) ∪ E(j⋆). It remains to check the assignment
cost of clients. First observe that for any component C,
constraint (4.3) states that we open at least one facility
in E(R(C)).

Now consider a client j. If y⋆
i = 1 for some

i ∈ E(j), then we have opened this facility, and in
the objective function of LP′(I ′), we also pay for its
connection cost. If y⋆

i = 0, then the fractional solution

y⋆ pays d
(1)
j · c(j, out(j)). Note that out(j) is one of

the pseudo-roots of comp(j). We also know we open a
facility i ∈ E(R(comp(j))). We assign j to this facility



i. Claim 4.2 implies that we pay at most 9 times what
the fractional solution pays for this demand.

Now suppose E(j) contains a fractionally open
facility. Lemma 4.3 shows that two options are possible :
(i) j is the only client for which E(j) contains a
fractionally open facility, or (ii) (j, j′) form a pseudo-
root pair of a component C and

∑

i∈E(R(C)) y⋆
i = 1.

Further, j and j′ are the only clients for which the set
E(j) contains a fractionally open facility.

Consider case (i) first. First assume that j is the
root of comp(j). Then, we have opened a facility i in
E(j). Lemma 4.3 shows that its connection cost is at
most 250 · OPT(I). Now suppose either j is a leaf or
one of the pseudo-roots. Since we always open a facility
in E(R(comp(j))), Lemma 4.3 and Claim 4.2 show that
the assignment cost of j is at most 9 · 250 · OPT(I) =
2250 · OPT(I).

Now, suppose case (ii) as above happens. We need
to worry about the connection cost of j and j′. Since
∑

i∈E(j) y⋆
i +

∑

i∈E(j′) y⋆
i = 1, one of the two summands

is at most 1/2 – suppose it is j. Then the LP objective

function pays at least 1/2 ·d
(1)
j c(j, j′). We know that we

have opened a facility i ∈ E(j)∪E(j′). Claim 4.2 shows

that the assignment cost of j is at most 9 · d
(1)
j c(j, j′),

and hence, at most 18 times the contribution from
the LP objective function. For j′, Lemma 4.3 and
Claim 4.2 show that the assignment cost of j′ is at most
9 · 250 · OPT(I) = 2250 · OPT(I).

So, the total assignment cost of all the clients is
at most 18 · LP′(I ′) + 2250OPT(I), which is at most
2700 · OPT(I) (using Fact 4.4).

5 Acknowledgments

The author would like to thank the anonymous referee
whose suggestions helped in simplifying the algorithm.

References

[AGK+01] Vijay Arya, Naveen Garg, Rohit Khandekar,
Adam Meyerson, Kamesh Munagala, and Vinayaka
Pandit. Local search heuristic for k-median and facility
location problems. In ACM Symposium on Theory of
Computing, pages 21–29, 2001.

[CG99] Moses Charikar and Sudipto Guha. Improved com-
binatorial algorithms for the facility location and k-
median problems. In IEEE Foundations of Computer
Science, pages 378–388, 1999.

[CG05] Moses Charikar and Sudipto Guha. Improved com-
binatorial algorithms for facility location problems.
SIAM J. Comput., 34(4):803–824, 2005.

[CGTS02] Moses Charikar, Sudipto Guha, Éva Tardos, and
David B. Shmoys. A constant-factor approximation

algorithm for the k-median problem. J. Comput. Syst.
Sci., 65(1):129–149, 2002.

[HKK10] MohammadTaghi Hajiaghayi, Rohit Khandekar,
and Guy Kortsarz. Budgeted red-blue median and its
generalizations. In ESA (1), pages 314–325, 2010.

[JV01] Kamal Jain and Vijay V. Vazirani. Approximation
algorithms for metric facility location and k-median
problems using the primal-dual schema and Lagrangian
relaxation. J. ACM, 48(2):274–296, 2001.

[KKN+11] Ravishankar Krishnaswamy, Amit Kumar,
Viswanath Nagarajan, Yogish Sabharwal, and Barna
Saha. The matroid median problem. In ACM/SIAM
Symposium on Discrete Algorithms, pages 1117–1130,
2011.

[KPR98] Madhukar R. Korupolu, C. Greg Plaxton, and
Rajmohan Rajaraman. Analysis of a local search
heuristic for facility location problems. In ACM/SIAM
Symposium on Discrete Algorithms, pages 1–10, 1998.

[LMW98] R. F. Love, J. G. Morris, and G. O. Wesolowsky.
Facilities Location: Models and Methods. North-
Holland, New York, NY, 1998.

[LV92] Jyh-Han Lin and Jeffrey Scott Vitter. epsilon-
approximations with minimum packing constraint vi-
olation (extended abstract). In ACM Symposium on
Theory of Computing, pages 771–782, 1992.

[Mes07] Julián Mestre. Lagrangian relaxation and partial
cover. CoRR, abs/0712.3936, 2007.

[MF90] P. Mirchandani and R. Francis. Discrete Location
Theory. Wiley, New York, NY, 1990.


