
DOI: 10.1007/s00453-002-0969-2

Algorithmica (2002) 34: 298–308 Algorithmica
© 2002 Springer-Verlag New York Inc.

Planar Graph Blocking for External Searching1

Surender Baswana2 and Sandeep Sen2

Abstract. We present a new scheme for storing a planar graph in external memory so that any online path
can be traversed in an I-O efficient way. Our storage scheme significantly improves the previous results for
planar graphs with bounded face size. We also prove an upper bound on I-O efficiency of any storage scheme
for well-shaped triangulated meshes. For these meshes, our storage scheme achieves optimal performance.

Key Words. External, Graph, Mesh, Planar, Searching.

1. Introduction. There are many search problems like robot motion planning and
searching in constraint networks that require online traversal in an undirected graph.
A number of problems in computational geometry are also related to online traversal
in graphs, namely, ray shooting in a simple polygon [4] and reporting the intersection
of a line segment with a triangulated mesh. Very often, the applications that require
solving these problems are of very large scale, and therefore it is important to design
I-O efficient algorithms for the online graph traversal problem. The I-O efficiency is
related to the maximum number of I-O block transfers required to perform an arbitrary
online traversal of any given graph. This is critically dependent on the scheme used for
storing a graph in the external memory, which is often referred to as Graph Blocking. The
efficiency of a blocking scheme is measured in terms of speed-up: σ , which is the average
number of edge-traversals between two consecutive I-O operations. The efficiency of
a blocking scheme is proportional to the value of σ , namely, a larger σ leads to better
I-O performance. In this paper we address the problem of blocking of planar undirected
graphs.

We assume that the graph is of bounded degree, and a vertex is allowed to be present
in more than one block. These assumptions are consistent with most of the applications
of the graph-blocking problem. Suppose that a disk block can hold B vertices, and the
internal memory can hold M vertices. The parameters B and M are related to the page
size and the internal-memory size respectively (by a constant factor). At any stage of
the online traversal, the next vertex to be visited can be any of the neighbors of the most
recently visited vertex. With every vertex, we store its associated adjacency list; if a
neighbor w of a vertex v is not present in the same block as that of v, we store the block
address of w in the adjacency list of v.

1 A preliminary version of this paper appeared in the proceedings of FSTTCS 2000, LNCS, vol. 1974, pp. 252–
263. The work by S. Baswana was supported in part by a fellowship from Infosys Technologies Ltd., Bangalore.
The work by S. Sen was supported in part by an All India Council for Technical Education career award.
2 Department of Computer Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New
Delhi-110016, India. {sbaswana,ssen}@cse.iitd.ernet.in.

Received March 5, 2001; revised January 23, 2002. Communicated by J. S. Vitter.
Online publication July 10, 2002.



Planar Graph Blocking for External Searching 299

Since the graph size is too large to be accommodated fully in the internal memory,
at any stage, there will be some vertices which are not present in internal memory.
Whenever a traversal reaches a vertex which is not present in internal memory, the block
containing the adjacency list of that vertex has to be fetched from the disk. Let v be
the last vertex visited, and let there be a vertex w at distance d from v, not present in
internal memory. It is obvious that there is a path leading to w which will force an I-O
operation within the next d steps. Conversely, if all the vertices lying at distance d from
v are present in the internal memory, then no block transfer can be forced in the next d
steps. The following definition will be useful for the remainder of the paper. For k ≤ B,
the k-neighborhood of a vertex v is defined as the set of k vertices nearest to v. It is easy
to see that growing a breadth-first-search (BFS) tree until we have included k vertices
yields a k-neighborhood3 of v. Based on the discussion above, here is a naive blocking
scheme for a graph G(V, E):

For each v ∈ V , store the k-neighborhood of v in a block on the disk.

During an online traversal, whenever a vertex v is not found in internal memory,
the block containing the k-neighborhood of v can be fetched from external memory. So
the blocking scheme mentioned above ensures a speed-up of r−(k), which denotes the
minimum depth of a BFS tree of size k in the given graph. However, this speed-up is
achieved at the expense of a k-fold blow up in the storage requirement, which is not
desirable for most practical situations. A blocking scheme is said to be space optimal
if the number of blocks required to store a graph is at most a constant multiple of the
minimum number of blocks required to store the graph. Like other previous approaches
to graph blocking [1], [3], we do not consider the cost of preprocessing.

1.1. Previous Work. Goodrich et al. [3] presented a space optimal blocking schemes
for grid graphs and complete d-ary trees. They derived a nontrivial upper bound of r+(B)

on the speed-up achievable in any graph, where r+(B) denotes the maximum depth of
a B-size BFS tree in the given graph. They also gave a space optimal blocking scheme
for the family of graphs with bounded r+(B)/r−(B). Although they did not present any
blocking scheme for general graphs, they conjectured the existence of a scheme which
achieves a speed-up of r−(B) with optimal storage. Agarwal et al. [1] gave a space
optimal blocking scheme for planar graphs that achieves a speed-up of r−(

√
B). For the

family of planar graphs, r−(B) can lie anywhere between logd B (e.g., a d-ary tree),
where d is the maximum degree of a vertex in the graph, and B (e.g., a chain). For the
smaller extreme (i.e., r−(B) ≈ logd B), the speed-up achieved by the blocking scheme
of Agarwal et al. [1] is close to r−(B) or, more precisely, σ = r−(B)/2. However, the
speed-up deteriorates steadily from the ideal value of r−(B), with increasing r−(B).
As a case in point, note that for a planar graph with r−(k) = kα (where α is some
positive fraction), the speed-up achieved is only a Bα/2th fraction of r−(B). Therefore,
in the case of planar graphs with r−(B) = √

B, the speed-up achieved is B1/4. The

3 A BFS tree of size k ≤ B, rooted at v, may not be unique. However, all of them will have same depth. It will
soon become clear that for the purpose of this paper there is no need to distinguish among them; any of them
can be considered a k-neighborhood of v.



300 S. Baswana and S. Sen

gap between r−(B) and the speed-up achieved widens even further for planar graphs
with larger values of r−(B).

1.2. Our Results. We present an efficient blocking scheme for general planar graphs,
with improved speed-up over that of Agarwal et al. [1]. Our blocking scheme guarantees
a speed-up of r−(s), where s is the largest number k ≤ B such that k ≤ r−(k)

√
B/c,

and c is the maximum face size in the graph. It can be seen that, for the family of planar
graphs having a small face size and r−(B) ≥ √

B, the speed-up achieved by our blocking
scheme is 	(r−(B)). Unlike the speed-up achieved by the blocking scheme of Agarwal
et al. [1], which deviates further from r−(B) as r−(B) increases, the speed-up achieved
by our blocking scheme approaches r−(B) as r−(B) increases. In fact, the speed-up
matches r−(B) for r−(B) ≥ √

B. There are a number of situations that involve planar
graphs with a small face size, like trees and geometric graphs (grids and meshes). For
such graphs, our blocking scheme outperforms earlier blocking scheme.

We also prove a bound on the best speed-up achievable in a planar mesh in terms
of degree of local uniformity of mesh and block size. Most of the meshes in practical
applications possess a good degree of local uniformity. Intuitively speaking, these meshes
are well-shaped. We prove that the worst-case speed-up achievable by the best scheme
in a planar mesh is O(

√
B), where the constant of proportionality depends upon the

degree of well-shapedness of the mesh. We use our blocking scheme of planar graphs to
achieve matching speed-up in a planar mesh.

2. Efficient Blocking of Planar Graphs. In this section we devise an efficient block-
ing scheme for planar graphs that achieves an improved speed-up over an earlier blocking
scheme given by Agarwal et al. [1]. We extend the following idea of partitioning a pla-
nar graph for our blocking scheme. Consider a planar graph of size N partitioned into
O(N/B) regions with each region containing at most B vertices and surrounded by
boundary vertices such that every path going from a vertex in one region to a vertex in
another region will pass through one or more of these boundary vertices. By storing the
k-neighborhood around every boundary vertex in a block and storing vertices of a region
together in a block, the following block-transfer strategy (referred to as A henceforth)
achieves a speed-up of σ = 	(r−(k)) for any online traversal.

STRATEGY A. Whenever the traversal extends to a vertex v, not present in internal
memory, and v is a boundary vertex, then read the block storing its k-neighborhood from
the disk; otherwise read the block corresponding to the region in which v lies.

It is clear that for every two blocks that we read from the disk, at least r−(k) vertices
of a path are traversed. Thus the speed-up achieved is 	(r−(k)). To achieve maximum
speed-up but keeping space optimality, we have to choose the largest k ≤ B such that the
space used for storing all the k-neighborhoods around the boundary vertices is O(N/B)

blocks.
Agarwal et al. [1] gave an efficient blocking scheme along the lines of the idea outlined

above. They used a technique developed by Fredrickson [2] for partitioning planar graphs.



Planar Graph Blocking for External Searching 301

Based on the separator theorem of Lipton and Tarjan [5], Fredrickson gave an algorithm
for partitioning a planar graph into O(N/B) regions, with each region having at most B
vertices and a total of O(N/

√
B) boundary vertices. By storing each of O(N/B) regions

in blocks, and storing the
√

B-neighborhood around every boundary vertex, strategy A
achieves a speed-up of 	(r−(

√
B)) and optimal storage space.

For the class of planar graphs with bounded degree, r−(B) can be as small as logd B
on one extreme (where d is the maximum degree of a vertex in a graph) and as large as
B on the other extreme. For planar graphs with r−(B) ≈ logd B, the speed-up achieved,
using the blocking scheme of Agarwal et al. [1], is 1

2 logd B, which is indeed close to
r−(B). Though the speed-up achieved is close to r−(B) for small values of r−(B), it
degrades drastically as r−(B) increases. To appreciate this point, note that for planar
graphs having r−(k) = kα (where α ≤ 1 is some constant), the speed-up is just a Bα/2th
fraction of r−(B).

We devise a refinement of the above mentioned blocking scheme for achieving a better
speed-up. Note that the blocking scheme achieves a speed-up of r−(

√
B) because we

stored a
√

B-neighborhood around every boundary vertex in the partition. To improve
the speed-up, we aim to store a neighborhood of size greater than

√
B around every

boundary vertex. Since the number of boundary vertices is 	(N/
√

B), any attempt to
increase the size of the neighborhood around a boundary vertex beyond

√
B will lead to

nonlinear space (an undesirable situation).

2.1. An Overview of Our Approach. We make the following useful observation: we
need not store separate

√
B-neighborhoods for boundary vertices which are in close

proximity. For example, let v be a boundary vertex, and let v1, v2, . . . , vj be other
boundary vertices which lie within a distance of r−(

√
B)/2 from v. Starting from

any of these boundary vertices, we must traverse at least r−(
√

B)/2 steps to cross a√
B-neighborhood of v (it follows from the triangle inequality). Therefore, instead of

storing a
√

B-neighborhood around every vertex vi ∈ v1, . . . , vj , we can just store
a

√
B-neighborhood around v only (as a common neighborhood for v1, . . . , vj ). In

doing so, the speed-up is reduced at most by half; but we will be storing less than
N/

√
B neighborhoods. This reduction in the total number of neighborhoods allows

us to increase the size of the neighborhoods (while still maintaining the linear space
constraint).

In order to exploit the idea above, the partitioning scheme must ensure that the sepa-
rator vertices be contiguous. The separator computed using the Lipton–Tarjan separator
theorem [5] does not guarantee a separator with sufficiently clustered vertices. On the
other hand, the planar-separator theorem given by Miller [6] shows the existence of a
vertex or a cycle as a balanced separator for a planar graph. For the case when the sep-
arator is a cycle, we can form clusters of the separator-vertices by breaking the cycle
into several chains of the same length. The set of vertices belonging to a chain define a
cluster. We finally store just one neighborhood per cluster.

2.2. Our Blocking Scheme. Having given the overview, we now formally describe the
new blocking scheme and analyze the speed-ups that can be achieved for various classes



302 S. Baswana and S. Sen

of planar graphs. First we state the planar-separator theorem given by Miller [6]:

THEOREM 2.1 (Miller). If G is an embedded planar graph consisting of N vertices,
then there exists a balanced separator which is a vertex or a simple cycle of size at most
2
√

2 · �c/2N , where c is the maximum face size. Such a separator is constructible in
linear sequential time.

Let G(V, E) be the given planar graph with maximum face size equal to c, and let
N be the number of vertices of the graph. If N < B we store G in a block on the disk;
otherwise we proceed as follows: we compute a separator using Miller’s theorem given
above. If the separator is a vertex v, we store the B-neighborhood around v; otherwise
(the separator is a cycle C of size ≤ 2

√
cN ) let s be a number in the range (

√
B, B)

that will be specified later. Pick every (r−(s)/2)th vertex of C to form a set S. For every
vertex v ∈ S, store the s-neighborhood of v in a block. Associate every vertex w of
separator C with the block that contains the s-neighborhood of v ∈ S nearest to w. We
denote the block associated with a boundary vertex w by Bw. Whenever a path extends
to a boundary vertex w, and w is not present in internal memory, we bring the block
containing Bw into internal memory. Now let the separator C partition V into two subsets
P1 and P2, each of size at most 2

3 N . We recursively carry out the blocking of subgraphs
induced by P1 and P2.

It can be verified that by using the block-transfer strategy A, the speed-up achieved
by the blocking scheme described above is 	(r−(s)). So a larger value of s will result in
a larger speed-up. For a given s, the total space used for blocking satisfies the following
recurrence:

S(N ) = S(N1) + S(N2) + 4
√

cN

r−(s)
s, where N1, N2 <

2N

3
,

the solution of which is

S(N ) = c1 N + c2

√
cN√

Br−(s)
s,

where c1 and c2 are constants independent of s.
To maximize s and keep the linear space constraint (S(N ) = O(N )), we choose

s = min(r−(s)
√

B/c, B); i.e., s is the largest number k ≤ B such that k ≤ r−(k)
√

B/c.

THEOREM 2.2. A planar graph of size N and maximum face size c can be stored in
O(N/B) blocks so that any online path of length t can be traversed using O(t/r−(s))
I-O operations, where s = min(r−(s)

√
B/c, B).

The new blocking scheme gives improvement in speed-up for planar graphs with bounded
face size. The improvement achieved is most significant in the case of graphs with
r−(k) = kα (the graphs for which the previous blocking schemes are not effective).

REMARK 1. For planar graphs with r−(B) = 	(
√

B) and maximum face size = c, the
value of s is equal to B/c. So the new blocking scheme achieves a speed-up equal to



Planar Graph Blocking for External Searching 303

r−(B/c), which is significantly better for planar graphs with small c than the previous
speed-up of r−(

√
B) in [1].

REMARK 2. For a tree, the new blocking scheme achieves a speed-up of r−(B).

REMARK 3. For planar graphs with r−(k) = kα , for some constant α ≤ 1
2 , the value

of s is (B/c)1/(2(1−α)). Thus the speed up achieved by the new blocking scheme is
(B/c)α/(2(1−α)), which is a significant improvement for planar graphs with small c (max-
imum face size) over the previous speed-up of Bα/2 achieved by the blocking scheme of
Agarwal et al. [1].

3. Blocking of Planar Meshes. In various problems of scientific computing, the un-
derlying graphs are often defined geometrically; for example, grid graphs and graphs in
VLSI technology. In addition to combinatorial structure, these graphs also have a geo-
metric structure associated with them. One such family of graphs is the mesh. A mesh
in d-dimensional space is a subdivision of a d-dimensional domain into simplices which
meet only at shared faces, e.g., a mesh in two dimensions is a triangulation of a planar
region, where triangles intersect only at shared edges and vertices.

Unlike a grid graph, where the edges are of the same length and the placement of
vertices has a high degree of symmetry, a mesh need not be uniform and symmetric. We
define two parameters, α and γ , to be associated with a planar mesh which (intuitively
speaking) measure its well-shapedness. We address the problem of blocking of planar
meshes. We present two results: First, we show that the worst-case speed-up achievable
by the best scheme in a planar mesh is O(

√
B), where the constant of proportionality

depends upon parameters α, γ . Next, we use the blocking scheme for planar graphs
described in the previous section to achieve a speed-up of 	(

√
B), where the constant

of proportionality that depends upon α, γ becomes smaller as well-shapedness of the
mesh reduces. Thus for meshes having a good degree of well-shapedness, the speed-up
achieved by the blocking scheme matches the best possible.

3.1. Well-Shaped Planar Meshes. A planar mesh is a triangulation of a region in two
dimensions, where the triangles meet only at shared edges and vertices. For simplicity,
we assume that a planar mesh extends infinitely in all directions (e.g., a mesh embedded
on a torus or a sphere). A planar mesh need not possess perfect uniformity and symmetry
like a grid graph. There may be variations in the edge-lengths and density of vertices
as we move from one region to another region in the mesh. However, as observed in
most of applications, there is certain degree of local uniformity present in mesh, i.e.,
in a neighborhood around a vertex there is not too much variation in edge-lengths and
vertex-density though the variation may be unbounded for the whole mesh. In visualizing
a mesh as a triangulation, this local uniformity can be viewed in the following way: the
triangles constituting the mesh are fat and the variation of the size (area) of these triangles
is bounded in a finite neighborhood. This local uniformity captures formally the notion
of well-shapedness of a planar mesh. We now define parameters to measure the local
uniformity of a planar mesh. We parameterize the fatness of triangles by the smallest
angle α of a triangle in planar mesh. We parameterize the variation in sizes of triangles



304 S. Baswana and S. Sen

within a B-neighborhood in the following way: Let u be a vertex and let Bu be the set
of vertices of a BFS tree of size B rooted at u. Let �u

B be the set of triangles with at
least one vertex belonging to Bu . γ is defined as the ratio of the area of the largest-area
triangle to the area of the smallest-area triangle belonging to the set �u

B . The parameters
α and γ measure local uniformity of a planar mesh.

The area of any triangle in the set �u
B lies in the range [A, γ A] for some A. Using

elementary geometry, it can be shown that the length of any edge e in the subgraph
induced by Bu has the following bounds:

emin = 2

√
A tan

α

2
≤ 2

√
γ A cot α = emax.(1)

LEMMA 3.1. The value of r−(B) of a planar mesh with parameters α, γ is 	((
√

tan α/√
γ )

√
B).

PROOF. Let u be an arbitrary vertex of the planar mesh, and let l be the depth of a BFS
tree of size B, rooted at u. Let w be a vertex of Bu at maximum Euclidean distance
dmax from u. Consider a circle C centered at u with radius dmax. The number of vertices
lying in the circle is at least B since Bu lies inside it. Thus the number of triangles
lying inside the circle is at least B/3. Note that the maximum number of triangles lying
inside a circle of radius dmax is ≤ πd2

max/A. Hence the following inequality must hold:
πd2

max/A ≥ B/3, i.e., dmax ≥ √
A/π

√
B/3. Also note that dmax is bounded by l · emax.

Thus l ≥ (
√

A/(
√

πemax))
√

B/3. Using the bound on emax from (1), and the definition
of r−(B), it follows that r−(B) = 	((

√
tan α/

√
γ )

√
B).

For a planar mesh, the following theorem gives a lower bound on the Euclidean
distance between two vertices in terms of the length of the shortest path separating them.

THEOREM 3.1. Let v be a vertex belonging to Bu in a planar mesh. If puv is the shortest
path-length from u to v, the Euclidean distance duv between u and v is 	(puv

√
A), where

the constant of proportionality depends upon the well-shapedness parameters (α, γ ) of
the mesh.

PROOF. Let w be a boundary vertex of the neighborhood Bu lying at the closest Eu-
clidean distance from u, and let N be the set of vertices lying within distance duw from
u. It can be seen that N ⊂ Bu . To prove the theorem, it suffices to show that for a vertex
v ∈ N , separated by a shortest path of length l from u, the Euclidean distance duv is
	(l

√
A). We proceed as follows: Let v be a vertex belonging to N , and let S be the line

segment joining u and v. We build a path zuv as we move along S from u (Figure 1). Let
p denote the vertex most recently added to the path we are building (initially p = u).
We add edges to our path maintaining the following invariant:

INVARIANT I . p lies on the edge most recently intersected by S; and every edge forming
the path has some point in common with S.



Planar Graph Blocking for External Searching 305

u

v

uvz

Fig. 1. Zig-zag path zuv between vertices u and v of neighborhood Bu in a planar mesh.

While moving along S building the path, let e be an edge intersected by S. If e contains
p, we keep p unchanged. Otherwise (e does not contain p), there is one endpoint, say q,
of edge e adjacent to p such that pq is the valid edge to be added to our path maintaining
the invariant I . So we extend our path by adding the edge pq to it, and p gets updated to
q . We continue this process until we reach v. In the special case when S passes through
a vertex, say x , we update p to x . We now bound the length of this zig-zag shaped
path zuv . The segment S intersects triangles of �u

B only, therefore the ratio of areas of
intersected triangles is bounded by γ . Path zuv divides the segment S into subsegments
whose total number is equal to the number of vertices lying on the path zuv excluding u
and v. Consider any three consecutive edges of zuv . There will be one (or two adjacent)
subsegment(s) of S intercepted between these three edges. Because of the constraints
imposed by bounded α and γ , the length of the intercepted subsegment (or sum of
the lengths of two intercepted subsegments) is at least emin sin α. Hence the number of
subsegments into which the segment S is divided by the path zuv (and so length of the
path zuv) is at most duv/(emin sin α). Using the bound on emin from (1), it follows that the
length of the path zuv is at most duv/(cα

√
A) , where cα = 2

√
tan(α/2) sin α.

Since the length puv of the shortest path between u and v is less than or equal to the
length of the path zuv , we have

puv ≤
(

duv

cα

√
A

)
.(2)

In other words, if v is a vertex belonging to Bu and is separated by a path of length puv

from v, then the Euclidean distance duv between u and v has the following lower bound:

duv ≥ cα puv

√
A.(3)



306 S. Baswana and S. Sen

We showed in Lemma 3.1 that the shortest path-length from u to a boundary vertex of
Bu is r−(B) = 	((

√
tan α/

√
γ )

√
B). By substituting the value of r−(B) for puv in (3),

we get the following corollary:

COROLLARY 3.1.1. The minimum Euclidean distance between u and a boundary vertex
of Bu in a planar mesh is ρ ≥ cα

√
((tan α)/γ )

√
B

√
A.

We now state the following lemma which gives an upper bound on r+(B):

LEMMA 3.2. The value of r+(B) for a planar mesh with parameters α, γ is O((
√

γ /

cα)
√

B).

PROOF. Let u be an arbitrary vertex of the planar mesh, and let v be a boundary vertex
of Bu at minimum Euclidean distance dmin from u. Now consider a circle C centered at u,
with radius dmin. Clearly, C lies completely inside Bu , and so the number of vertices lying
inside C is at most B. From elementary geometry, it follows that the circle C contains
at least 3πd2

min/(γ A) vertices. Therefore 3πd2
min/(γ A) ≤ B. So dmin ≤ √

γ B A/(3π).
Now using the lower bound on duv , from (3) of the proof of the theorem given above, it
follows that puv ≤ (

√
γ /(cα

√
3π))

√
B. In other words, a boundary vertex of Bu is sepa-

rated from u, by a path of length O((
√

γ /cα)
√

B), i.e., r+(B) = O((
√

γ /cα)
√

B).

3.2. Upper Bound on the Speed-Up for Planar Meshes. Goodrich et al. [3] proved an
upper bound of r+(B) on the worst-case speed-up achievable by the best scheme in a
graph. We showed in the previous subsection (Lemma 3.2) that r+(B) for a planar mesh
is O((

√
γ /cα)

√
B). We can now state the following theorem:

THEOREM 3.2. For a planar mesh, the worst-case speed-up that can be achieved by the
best blocking scheme is σ = O(Cαγ

√
B), where Cαγ is a constant depending upon the

parameters (α, γ ) that capture the well-shapedness of the mesh.

For the sake of completeness, we give an alternate proof for the upper bound on
the speed-up in a planar mesh. Consider a planar mesh in the x–y plane. We present a
traversal strategy which will ensure one block transfer on average for every O(

√
B) steps

traversed, irrespective of the underlying blocking scheme. Define a vertex to be covered if
it happens to be in the internal memory at least once. Initially, before starting traversal, no
vertex is present in the internal memory, and so all the vertices are uncovered. Let u be the
most recently visited vertex (path-front). It is obvious that if there is an uncovered vertex
separated by a path of length ≤ √

B from u, we can extend our path to that uncovered
vertex (and thus force a block transfer in

√
B steps); but what if all the vertices separated

by paths of length ≤ √
B from u are covered? Note that at least one block-transfer is

required to cover a set of B uncovered vertices. So in case there is no uncovered vertex
separated by path of length

√
B from the path-front, we move the next

√
B steps in such

a way that we can associate distinct 	(B) covered vertices to these steps. This would
still imply that there is a block transfer after every O(

√
B) steps on average. This is the

basic idea underlying the traversal strategy.



Planar Graph Blocking for External Searching 307

v v

(i) (ii)

vCell Cellv

Fig. 2. Two types of sub-paths from a vertex v in the mesh (the vertices lying in the shaded region are covered
vertices): (i) Sub-path of type p′ if there is any uncovered vertex in Cellv . (ii) Sub-path of type px if all the
vertices of Cellv are covered.

For a vertex u of the mesh, Cellu denotes a square with the base parallel to the x-axis,
and u lying on its left vertical side. The length of each of its four sides is chosen to be
ρ/2, where ρ is the minimum Euclidean distance between u and a boundary vertex of
Bu . It follows from Corollary 3.1.1 that the number of vertices lying in Cellu is more
than co B and every vertex of Cellu is reachable from u by a path of length less than c

√
B

for some constants c, co depending upon the well-shapedness of the mesh. Here is the
traversal strategy:

We start from any vertex and always move rightward within the mesh. The path can
be visualized as a sequence of sub-paths of type p′ and px (Figure 2). At a point, let
v be the most recently visited vertex. If there is any uncovered vertex inside Cellv , we
extend our path to that uncovered vertex (we call it a sub-path of type p′) and thus force a
block-read from the disk; otherwise we extend our path to a covered vertex lying closest
to the right edge of Cellv (we call it a sub-path of type px ).

Let b be the number of block transfers encountered in traversing t steps in the mesh
according to the strategy above. Every sub-path of type p′ causes a block transfer. So
the number of sub-paths of type p′ is at most b. Also note that for every sub-path of type
px , the number of covered vertices lying to the left of a path-front in the mesh increases
by co B. Thus we can associate a set of unique co B covered vertices to a sub-path of type
px (uniqueness follows from the unidirectionality of traversal). Since a block transfer
can cover at most B vertices, it follows that the number of sub-paths of type px is at
most b/co. So the total number of sub-paths (of type p′ and px ) is bounded by 2b/co.
Also note that the length of each sub-path is no more than c

√
B (from definition of Cell

given above). Hence, t ≤ 2c
√

Bb/co or, in other words, the number of block-transfers
b required to traverse t steps is 	(t/

√
B). Hence, we can conclude that the traversal

strategy described above will ensure a block transfer after every O(
√

B) steps on average,
irrespective of the underlying blocking scheme of the mesh.



308 S. Baswana and S. Sen

3.3. Efficient Blocking of Planar Meshes. We can block planar meshes efficiently using
our blocking scheme for planar graphs described in Section 2. From Lemma 3.1, it follows
that r−(k) = 	(

√
(tan α)/γ

√
k) for k ≤ B. Also note that the face size in a planar mesh

is 3. So it follows easily from Theorem 2.2 that our blocking scheme guarantees speed-up
of 	(((tan α)/γ )

√
B) in a planar mesh with parameters α, γ . In the previous subsection

we established an upper bound of O(
√

B) on the speed-up in a planar mesh. Thus our
blocking scheme achieves optimal speed-up in a planar mesh having a good degree of
well-shapedness.

THEOREM 3.3. There is a space optimal blocking scheme which ensures a speed-up of
	(((tan α)/γ )

√
B) in a planar mesh, where the parameters (α, γ ) measure the well-

shapedness of the mesh.

4. Conclusions. We addressed the problem of planar graph blocking in this paper.
We described a blocking scheme which guarantees improved speed-up in planar graphs
of bounded face size over previous blocking schemes. We also established a bound on
the worst-case speed-up that can be achieved by the best blocking scheme in a planar
mesh. For planar meshes with a good degree of well-shapedness (local uniformity), our
blocking scheme achieves optimal speed-up.

There is still no space optimal blocking scheme which can ensure I-O efficient traversal
in general graphs (not necessarily planar). Such a scheme will help solve a large number
of problems which require I-O efficient traversal in general graphs.

References

[1] P.K. Agarwal, L. Arge, T.M. Murli, K.R. Varadarajan, and J.S. Vitter, I/O-efficient algorithms for contour-
line extraction and planar graph blocking, Proceedings of the Ninth ACM–SIAM Symposium on Discrete
Algorithms, 1998, pp. 117–126.

[2] G.N. Fredrickson, Fast algorithms for shortest paths in planar graphs, with applications, SIAM Journal
of Computing, 16 (1987), 1004–1022.

[3] M.T. Goodrich, M.H. Nodine, and J.S. Vitter, Blocking for external graph searching, Algorithmica, 16(2)
(August 1996), 181–214.

[4] J. Hershberger and S. Suri, A pedestrian approach to ray shooting: shoot a ray, take a walk, Journal of
Algorithms, 18 (1995), 403–432.

[5] R.J. Lipton and R.E. Tarjan, A separator theorem for planar graphs. SIAM Journal of Applied Mathematics,
36 (1979), 177–189.

[6] G. Miller, Balanced cyclic separator for 2-connected planar graphs, Journal of Computer and System
Sciences, 32 (1986), 265–279.


