
1

1M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Dheeraj Bhardwaj

Department of Computer Science & Engineering

Indian Institute of Technology, Delhi – 110016 India

http://www.cse.iitd.ac.in/~dheerajb

Message Passing Interface

Part - II

2M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Outlines

� Basics of MPI

� How to compile and execute MPI programs?

� MPI library calls used in Example program

� MPI point-to-point communication

� MPI advanced point-to-point communication

� MPI Collective Communication and Computations

� MPI Datatypes

� MPI Communication Modes

� MPI special features

Message Passing Interface

2

3M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

The MPI Message Passing Interface Small or Large

MPI can be small.

One can begin programming with 6 MPI function calls

MPI_INIT Initializes MPI

MPI_COMM_SIZE Determines number of processors

MPI_COMM_RANK Determines the label of the calling process

MPI_SEND Sends a message

MPI_RECV Receives a message

MPI_FINALIZE Terminates MPI

MPI can be large

One can utilize any of 125 functions in MPI.

Is MPI Large or Small?

4M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Blocking Send

A typical blocking send looks like

send (dest, type, address, length)

Where

� dest is an integer identifier representing the process to receive the

message

� type is nonnegative integer that the destination can use to selectively

screen messages

� (address, length) describes a contiguous area in memory containing the

message to be sent

MPI Blocking Send and Receive

3

5M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Point-to-Point Communications

The sending and receiving of messages between pairs of processors.

� BLOCKING SEND: returns only after the corresponding

RECEIVE operation has been issued and the message has been

transferred.

MPI_Send

� BLOCKING RECEIVE: returns only after the corresponding

SEND has been issued and the message has been received.

MPI_Recv

MPI Blocking Send and Receive

6M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

If we are sending a large message, most implementations of

blocking send and receive use the following procedure.

S = Sender R = Receiver

MPI_SEND (blocking standard send)

data transfer from

source complete
size > threshold

task waits

MPI_RECV

wait

task continues when data

transfer to user’s buffer is

complete

Transfer doesn’t begin until

word has arrived that

corresponding MPI_RECV

has been posted

S

R

MPI Blocking Send and Receive

4

7M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Non-blocking Receive: does not wait for the message

transfer to complete, but immediate returns control back to

the calling processor.

MPI_IRecv

C

MPI_Isend (buf, count, dtype, dest, tag, comm, request);

MPI_Irecv (buf, count, dtype, dest, tag, comm, request);

Fortran

MPI_Isend (buf, count, dtype, tag, comm, request, ierror)

MPI_Irecv (buf, count, dtype, source, tag, comm, request, ierror)

MPI Non- Blocking Send and Receive

8M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

� Separate communication into three phases:

• Initiate non-blocking communication.

• Do some work (perhaps involving other communications ?)

• Wait for non-blocking communication to complete.

Non- Blocking Communications

5

9M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

MPI Non- Blocking Send and Receive

10M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

If we are sending a small message, most implementations of non-blocking sends and

receive use the following procedure. The message can be sent immediately and

stored in a buffer on the receiving side.

S = Sender R = Receiver

An MPI-Wait checks to see it a non-blocking operation has completed. In this case,

the MPI_Wait on the sending side believes the message has already been received.

MPI_ISEND (non-blocking standard send)

size ≤ threshold MPI_WAIT

Transfer to buffer on receiving

node can be avoided if

MPI_IRECV posted early enough

MPI_IRECV
MPI_WAIT

no delay if MPI_WAIT

is late enough

MPI Non- Blocking Send and Receive

6

11M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

If we are sending a large message, most implementations of non-blocking sends

and receive use the following procedure. The send is issued, but the data is not

immediately sent. Computation is resumed after the send, but later halted by an

MPI_Wait.

S = Sender R = Receiver

An MPI_Wait checks to see it a non-blocking operation has completed. In this

case, the MPI_Wait on the sending side sees that the message has not been sent

yet.

MPI_ISEND (non-blocking standard send)

data transfer from

source complete
size > threshold

task waits
S

R

MPI_WAIT

MPI_IRECV MPI_WAITtransfer doesn’t begin until word

has arrived that corresponding

MPI_IRECV has been posted

no interruption if

wait is late

enough

MPI Non- Blocking Send and Receive

12M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

� Synchronous mode

• The same as standard mode, except the send will not

complete until message delivery is guaranteed

� Buffered mode

• Similar to standard mode, but completion is always

independent of matching receive, and message may be

buffered to ensure this

MPI Communication Modes

7

13M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

If we the programmer allocate some memory (buffer space) for

temporary storage on the sending processor, we can perform a type

of non-blocking send.

S = Sender R = Receiver

MPI_RECV

MPI_BSEND (buffered send)

copy

data to

buffer

data transfer to user-

supplied buffer complete

task waits

S

R

MPI Buffered Send and Receive

14M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Sender mode Notes

Synchronous send
Only completes when the receive

has completed

Buffered send
Always completes (unless an

error occurs), irrespective of

receiver.

Standard send
Either synchronous or

buffered.

Ready send Always completes (unless an

error occurs), irrespective of

whether the receive has

completed.

Receive Completes when a message

has arrived.

MPI Communication Modes

8

15M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

OPERATION MPI CALL

Standard send MPI_SEND

Synchronous send MPI_SSEND

Buffered send MPI_BSEND

Ready send MPI_RSEND

Receive MPI_RECV

MPI Sender Modes

MPI Communication Modes

16M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Message type

� A message contains a number of elements of some
particular datatype

� MPI datatypes:

• Basic types

• Derived types - Vector, Struct, Others

� Derived types can be built up from basic types

� C types are different from Fortran types

MPI Datatypes

9

17M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Contiguous Data

� The simplest derived datatype consists of a number of
contiguous items of the same datatype

� C :

int MPI_Type_contiguous (int count, MPI_Datatype
oldtype,MPI_Datatype *newtype);

� Fortran :

MPI_Type_contiguous (count, oldtype, newtype)

integer count, oldtype, newtype

MPI Derived Datatypes

18M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

MPI Derived Datatypes

10

19M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Constructing a Vector Datatype

� C int MPI_Type_vector (int count, int blocklength, int stride,

MPI_Datatype oldtype, MPI_Datatype *newtype);

� Fortran

MPI_Type_vector (count, blocklength, stride, oldtype, newtype, ierror)

MPI Derived Datatypes

Extent of a Datatype

� C int MPI_Type_extent (MPI_Datatype datatype, int *extent);

� Fortran

MPI_Type_extent(datatype, extent, ierror)

integer datatype, extent, ierror

20M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

MPI Derived Datatypes

11

21M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Constructing a Struct Datatype

� C :

int MPI_Type_struct (int count, int array_of_blocklengths,

MPI_Aint *array_of_displacements,

MPI_Datatype *array_of_types,

MPI_Datatype *newtype);

� Fortran :

MPI_Type_Struct (count, array_of_blocklengths,

array_of_displacements, array_of_types, newtype, ierror)

MPI Derived Datatypes

22M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Committing a datatype

� Once a datatype has been constructed, it needs to be
committed before it is used.

� This is done using MPI_TYPE_COMMIT

� C

int MPI_Type_Commit (MPI_Datatype *datatype);

� Fortran

MPI_Type_Commit (datatype, ierror)

integer datatype, ierror

MPI Derived Datatypes

12

23M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

MPI : Support for Regular Decompositions

� Using topology routines

“MPI_Cart_Create “

User can define virtual topology

� Why you use the topology routines

“Simple to use (why not?)

“Allow MPI implementation to provide low expected

contention layout of processes (contention can matter)

“Remember,contention still matters; a good mapping can

reduce contention effects

MPI - Using topology

24M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

MPI : Nonblocking operations, overlap effective

� Isend, Irecv, Waitall

MPI : Persistent Operations

� Potential saving

“ Allocation of MPI_Request

� Variation of example

“ sendinit, recvinit, startall, waitall

“ startall(recvs), sendrecv/barrier, startall(rsends), waitall

� Vendor implementations are buggy

MPI Persistent Communication

13

25M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Collective Communications Collective Communications

The sending and/or receiving of messages to/from groups of
processors. A collective communication implies that all
processors need participate in the communication.

� Involves coordinated communication within a group of
processes

� No message tags used

� All collective routines block until they are locally complete

� Two broad classes :

• Data movement routines

• Global computation routines

MPI Collective Communications

26M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Collective Communication

� Communications involving a group of processes.

� Called by all processes in a communicator.

� Examples:

• Barrier synchronization.

• Broadcast, scatter, gather.

• Global sum, global maximum, etc.jj

MPI Collective Communications

14

27M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Characteristics of Collective Communication

� Collective action over a communicator

� All processes must communicate

� Synchronization may or may not occur

� All collective operations are blocking.

� No tags.

� Receive buffers must be exactly the right size

MPI Collective Communications

28M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Communication is coordinated among a group of processes

� Group can be constructed “by hand” with MPI group-
manipulation routines or by using MPI topology-definition
routines

� Different communicators are used instead

� No non-blocking collective operations

MPI Collective Communications

Collective Communication routines - Three classes

• Synchronization

• Data movement

• Collective computation

15

29M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Barrier

A barrier insures that all processor reach a specified location
within the code before continuing.

� C:

int MPI_Barrier (MPI_Comm comm);

� Fortran:

MPI_barrier (comm, ierror)

integer comm, ierror

MPI Collective Communications

30M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Broadcast

A broadcast sends data from one processor to all other
processors.

� C:

int MPI_Bcast (void *buffer, int count, MPI_Datatype
datatype, int root, MPI_Comm comm);

� Fortran:

MPI_bcast (buffer, count, datatype, root, comm,
ierror)

<type> buffer(*)

integer count, datatype, root, comm, ierror

MPI Collective Communications

16

31M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Global Reduction Operations

� Used to compute a result involving data distributed over a
group of processes.

� Examples:

• Global sum or product

• Global maximum or minimum

• Global user-defined operation

MPI Collective Computations

32M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Fortran

MPI_Reduce (sendbuf, recvbuf, count, datatype, op,
root, comm, ierror)

<type> sendbuf (*), recvbuf (*)
integer count, datatype, op, root, comm,
integer ierror

C

int MPI_Reduce (void *sendbuf, void *recvbuf, int
count, MPI_Datatype datatype, MPI_Op
op, int root, MPI_Comm comm) ;

MPI Collective Computations

17

33M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Collective Computation Operations

MPI_LOR

MPI_LXOR

Operation

Logical and

Logical or

Logical exclusive or (xor)

MPI_BAND Bitwise AND

MPI_BOR Bitwise OR

MPI_Name

MPI_LAND

MPI_BXOR Bitwise exclusive OR

MPI Collective Computations

34M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Collective Computation Operation

MPI_MIN

MPI_PROD

MPI_SUM

Operation

Maximum

Minimum

Product

Sum

MPI Name

MPI_MAX

MPI_MAXLOC

MPI_MAXLOC

Maximum and location

Maximum and location

MPI Collective Computations

18

35M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Reduction

A reduction compares or computes using a set of data stored on all
processors and saves the final result on one specified processor.

Global Reduction (sum) of an integer array of size 4 on each
processor and accumulate the same on processor P1

MPI Collective Computations

36M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Gather

Accumulate onto a single processor, the data that resides on all
processors

Gather an integer array of size of 4 from each processor

MPI Collective Communication

19

37M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Scatter

Distribute a set of data from one processor to all other processors.

Scatter an integer array of size 16 on 4 processors

MPI Collective Communication

38M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

AP0

P1

P2

P3

P0

P1

P2

P3

A

A

A

A

Broadcast

AP0

P1

P2

P3

P0

P1

P2

P3

A

B

C

D

Scatter

B C D

Gather

Representation of collective data movement in MPI

MPI Collective Communication

20

39M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

P0

P1

P2

P3

P0

P1

P2

P3

=A0+A1+A2+A3

A0

Reduce (A,B,P2,MAX)

Reduce (A,B,P1,SUM)A1

A2

A3

A0

A1

A2

A3

P0

P1

P2

P3

P0

P1

P2

P3

Representation of collective data movement in MPI

= MAXIMUM

MPI Collective Communication

40M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

� All versions deliver results to all participating processes

� V -version allow the chunks to have different non-uniform
data sizes (Scatterv, Allgatherv, Gatherv)

� All reduce, Reduce , ReduceScatter, and Scan take both
built-in and user-defined combination functions

Allgather Allgatherv Allreduce

Alltoall BcastAlltoallv

Gather ReduceGatherv

Reduce Scatter Scan Scatter

Scatterv

MPI Collective Communications & Computations

21

41M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Representation of collective data movement in MPI

AP0

P1

P2

P3

P0

P1

P2

P3

A

A

A

A

All gather

A0P0

P1

P2

P3

P0

P1

P2

P3

All to All

A1 A2 A3

B

C

D

B C D

B C D

B C D

B C D

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

D0

D1

D2

D3

MPI Collective Communication

42M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

All-to-All

Performs a scatter and gather from all four processors to all
other four processors. every processor accumulates the final
values

All-to-All operation for an integer array of size 8 on 4
processors

MPI Collective Communication

22

43M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

• Profiling - Hooks allow users to intercept MPI calls to
install their own tools

� Environmental

• Inquiry

• Error control

Features of MPI

� Collective

• Both built-in and user-defined collective operations

• Large number of data movements routines

• Subgroups defined directly or by topology

� Application-oriented process topologies

• Built-in support for grids and graphs (uses groups)

44M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

� General

• Communicators combine context and group for
message security

• Thread safety

� Point-to-Point communication

• Structured buffers and derived datatypes, heterogeneity

• Modes: normal (blocking and non-blocking),
synchronous, ready (to allow access to fast protocols),
buffered

Features of MPI

23

45M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

� Non-message-passing concepts included:

• Active messages

• Threads

� Non-message-passing concepts not included:

• Process management

• Remote memory transfers

• Virtual shared memory

Features of MPI

46M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

� Positives

• MPI is De-facto standard for message-passing in a box

• Performance was a high-priority in the design

• Simplified sending message

• Rich set of collective functions

• Do not require any daemon to start application

• No language binding issues

Features of MPI

24

47M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Pros

� Best scaling seen in practice

� Simple memory model

� Simple to understand conceptually

� Can send messages using any kind of data

� Not limited to “shared -data”

Features of MPI

48M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Cons

� Debugging is not easy

� Development of production codes is much difficult
and time consuming

� Codes may be indeterministic in nature, using
asynchronous communication

� Non-contiguous data handling either use derived data
types which are error prone or use lots of messages,
which is expensive

Features of MPI

25

49M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

MPI-2 Techniques – Positives

� Non-blocking collective communications

� One-sided communication

� “ put/get/barrier to reduce synchronization points

� Generalized requests (interrupt receive)

� Dynamic Process spawning/deletion operations

� MPI-I/O

� Thread Safety is ensured

� Additional language bindings for Fortran90 /95 and
C++

Features of MPI-2

50M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Tuning Performance (General techniques)

� Aggregation

� Decomposition

� Load Balancing

� Changing the Algorithm

Tuning Performance

� Performance Techniques

� MPI -Specific tuning

� Pitfalls

MPI - Performance

26

51M
e
ss
a
g
e
 P
a
ss
in
g
 I
n
te
rf
a
c
e

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

1. Gropp, W., Lusk, E. and Skjellum, A., Using MPI: Portable
Parallel Programming with Message-Passing Interface, The MIT
Press, 1999.

1. Pacheco, P. S., Parallel Programming with MPI, Morgan
Kaufmann Publishers, Inc, California (1997).

2. Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis,
Introduction to Parallel Computing, Design and Analysis of
Algorithms, Redwood City, CA, Benjmann/Cummings (1994).

3. William Gropp, Rusty Lusk, Tuning MPI Applications for Peak
Performance, Pittsburgh (1996)

References

