Rapid Resource-Constrained Har dwar e Performance Estimation

Basant K. Dwivedi
Caypto Design Systems (1) Pvt. Ltd.

Som Datt Tower, K-2, Sector 18, NOIDA, India

basant@calypto.com

M. Balakrishnan
Dept. of Computer Science and Engg.
Indian Institute of Technology Delhi
Hauz Khas, New Delhi, India
mbala@cse.iitd.ernet.in

Abstract

In a hardware-software co-design environment, an ap-
plication is partitioned into modules. Each module is then
mapped either to software or to hardware. The mapping
process is driven by the hardware/software cost and per-
formance parameters of each module. This makes hard-
ware estimation important to evaluate the various candi-
date architectures. Lack of an efficient hardware estima-
tion methodology and a supporting tool results in inefficient
partitioning. In this paper, we present novel algorithms for
clock period estimation and estimation of upper bound on
execution time under given resource constraints which in-
cludes constraints on number of ports in the register file
and memory. Experimental results on benchmarks from the
High-Level Synthesis (HLS) [1], MiBench [2] and Media-
bench [3] suites, show the effectiveness of our algorithms.

1 Introduction

With decreasing cost of silicon, system-on-chip (SoC)
based architectures are becoming common. SoC architec-
tures for many applications consist of programmable pro-
cessors which execute software (SW) part of the application
and hardware (HW) accelerators [4, 5] which execute the
hardware part of the application. Synthesis of such systems
is achieved by some hardware-software co-design frame-
works such as [6, 7, 8].

A typical HW/SW co-design framework is shown in Fig-
ure 1. An application written in a high-level language like
C along with an architectural template is fed to the parti-
tioner. The partitioner then maps functions of the applica-
tion onto HW or SW based on corresponding HW/SW met-
rics such as area, performance, power etc. SW metrics can

Arun Kgariwal
School of Information and Computer Science
University of Californiaat Irvine, USA
arun_kejariwal @ieee.org

Anshul Kumar
Dept. of Computer Science and Engg.
Indian Institute of Technology Delhi
Hauz Khas, New Delhi, India
anshul @cse.iitd.ernet.in

be obtained by simulation or actual execution on the target
processor, but it takes more time. On the other hand SW es-
timation such as done in [9] is faster. Similarly HW metrics
can be obtained either by doing synthesis or by performing
estimation [10, 11]. As shown in this paper, getting HW
metrics using estimation is much faster than actual synthe-
sis. Such an estimation approach is necessary for providing
values of HW metrics during iterative design space explo-
ration (DSE) process.

Hardware
Estimation

oftware

Partitioning Estimation

Processor Library

Hardware Library| Hardware Software
~ ALUs { Synthesis } { Synthesis }
- Multipliers
- Shifters
- Multiplexers etc|

— Processor descriptions
— Co-—processor interfaces

Interface
Synthesis

System
Integration

Verification an
Implementation
Figure 1. A HW/SW co-design framework

In this paper, we address the estimation of performance
of the given part of application when it is mapped onto HW.
Specifically, performance or execution time is a product of
number of clock cycles and clock period. The choice of
a particular clock period influences the utilization of func-
tional units used in the design apart from the execution time.

Thus, optimal clock estimation is critical in a co-design en-
vironment especially for real time embedded systems be-
cause of real-time performance constraints. In [12], max-
imum delay of a functional unit (FU) in the critical path
is chosen as the clock cycle. In [13], Yoda et. al present
gate-level delay-insertion based clock period minimization
of synchronous circuits. However, such low-level tuning
is not possible because gate level information is not avail-
able. The Clock Slack Minimization (CSM) method [14]
estimates the “optimum” clock by minimizing the average
slack in the entire data flow graph of the program. This
method does not consider the critical path which results in
longer execution times. In Section 3.1, we present Criti-
cal Path Slack Minimization (CPSM) algorithm which takes
into account the critical path to determine optimal clock.

For performance estimation, the other parameter to be
estimated is the number of clock periods. Unlike work on
estimation of lower bound [15, 16, 17] on execution time
and architectural resources requirements [16, 18, 19], prob-
lem of estimation of upper bound on execution time has not
been adequately addressed. For applications which are re-
quired to meet real-time constraints, upper bound estima-
tion is necessary to ensure a feasible design. In [20], Lin
et. al present Operator-Use Method (OUM) to estimate the
upper bound on the number of control steps required to ex-
ecute a behavior, given a resource constraint set. The upper
bound on control steps for a ready list (refer to Section 3.2)
is given by Equation (1)

occur
csteps :\%gé [{nuT(Eg)))-‘ X delay((p)] 1)
where, @ represents the set of all FU types. occur(¢) and
num(@) represent the number of occurrences of operations
which are to be mapped to FU type @ in a basic block and
number of instances of FU type o respectively. delay(o)
represents the delay of an FU type ¢. OUM has O(n) com-
plexity where n is the number of nodes in the data flow
graph considered. However, they do not take int account
the register file and memory port constraints for estimation
purposes.

Parallel execution of two or more instructions (like in
multiple issue processors) mandates simultaneous access to
operands stored in the register file or in the memory. This
has made the use of multiport register files and memory
indispensable - as they permit reading/writing more data
during one clock cycle. Thus, register file and memory
port constraints must be considered during hardware per-
formance estimation.

Jie et. al [21] compute the upper bound on execution
time using a variant of list scheduling. Though they con-
sider port constraint, the complexity of their approach is
O(n?). Also, the scheduling stage will become the bot-
tleneck, if a number of different hardware implementations

v

g SUIF Opt. passes C Application Slock ;

g pt. p | pp Nem

3 | | =

© ! ; HW Lib ; | Optimal |

<! MachSUIF pass in : —
; : HMDES ' Area

\\ | s 1

N T

@ HwLibParser ! :

Annotated IR :

: Ex Time

=]

3 Bound. :

I Boundll |

Hardware Metrics : 3

(Clock, Execution Time, Area) ! Kernel |

Figure 2. srwzs:: Hardware Estimator Tool

are to be evaluated corresponding to different resource con-
straints. Except in [20, 21], estimation of upper bound on
performance has not been reported by anyone to the best of
our knowledge.

In Section 3.2, we present a novel algorithm to estimate
upper bound on execution time. This algorithm takes into
account the constraints due to limited number of ports in the
register file and memory. The complexity of our algorithm
is O(n) which enables to quickly evaluate various hardware
implementations for different resource constraints.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss our hardware estimation tool setup. Sec-
tion 3.1 and Section 3.2 provide details of our clock pe-
riod and upper bound execution time estimation algorithms.
Section 4 presents the experimental results and finally, Sec-
tion 5 summarizes this work and discusses the possible fu-
ture directions.

2 Hardware Estimation Tool

The algorithms presented in this paper have been im-
plemented in our hardware estimator tool, #wzst shown
in Figure 2. An application written in C language is pre-
processed to generate the program’s SUIF2 [22] IR. Then
classical optimizations such as common sub-expression
elimination (CSE) available in SUIF are applied on the IR.
The MachSUIF [23] passes are used to generate the con-
trol flow graph (CFG) of the program and data dependence
graph (DDG) at the basic block level. The HwLibParser
pass then annotates the library information in the IR. We
used HMDES [24] to describe our parameterizable resource
library. The annotated IR is fed to the #w%s¢’s kernel along
with the constraints set. The kernel consists of independent
passes, each estimating a particular metric. The kernel sup-
ports clock estimation, area estimation and lower and upper
bounds on execution time. Except clock and upper bound
execution time estimations, detailed discussion on rest of
the stages of #rwzst is outside the scope of this paper.

Algorithm 1 Critical Path Slack Minimization (CPSM)

* Determine the critical path */
critical _path — path with maximum PL(P;) x ' (P;) out
of all the paths in CDFG
for each @ € @ in the critical_path do

calculate load(¢)
end for
Clkopt =0
for Clkmin < Clk < Clkmax do

for each g € ® do

[* Compute slack */

slack(q) = [de'g—lyk(ﬂ x Clk — delay(¢)

end for
/* Compute total slack, Q, along the critical path */

Q(CIk) = zq)slack((p) x load (@)
(03

/* Compute utilization, pu */
_1___9@k
M= PL{critical . paih)
if Q(CIk) = maxima then
Clkopt = Clk
end if
end for

3 Execution Time Estimation Methodology
3.1 Clock Estimation

Optimal clock selection is guided by the following ob-
jectives - 1) Minimizing execution time and 2) Maximizing
clock utilization. In most applications critical path execu-
tion delimits overall performance. Therefore, optimal clock
is determined w.r.t. the critical path. Optimal clock is deter-
mined by minimizing the total slack along the critical path.
The clock period thus obtained minimizes execution time of
the program and maximizes FU utilization.

We developed Algorithm 1, Critical Path Slack Mini-
mization (CPSM), to determine optimal clock by minimiz-
ing clock slack along the critical path (critical _path) in the
control data flow graph (CDFG) of the application. In Al-
gorithm 1, PL(P;) and I'(P;) denote the path length and
execution frequency of path P; respectively. @ is a set of
FU types and load(¢) represents the number of instances
of an FU type ¢ along the critical path. The delay of an
FU type @ is denoted by delay(@). Clkmn is governed by
the maximum clock frequency specified by design libraries.
Clkmax is approximated to the smallest value of operator de-
lay. We compute clock utilization. p, for each Clk where
Clkmin < Clk < Clkmax. The optimal clock corresponds to
the maximum clock utilization - maxima in Algorithm 1.

Example 1 Consider the DDG given in Figure 3. The flow
along the bold arrows represents the critical path of the
DDG. For this DDG, CSM yields an optimum clock of 74 ns.

However, slack minimization along the critical path yields
an optimum clock of 30 ns. Table 1 presents quantitative
analysis of CPSM and CSM. We observe that CSM results
in longer execution times with more slack penalty. CPSM
eclipses CSM in clock utilization by over 5%. Experiments
on Mediabench, MiBench, HLS benchmarks, Section 4.1,
validate the above.

Dealy(x) =147 ns Delay(-) =56 ns Delay(+) =48 ns

Figure 3. Optimal Clock Determination

CPSM CSM

Total Ex. Time 420 ns 444 ns
Q 14ns 38ns

U 96.67% 91.44%

Table 1. Comparison between CPSM & CSM

In Figure 3 the critical path corresponds to the longest
path of the DDG. However, critical path in a CDFG
of the application may not correspond to the longest
path. For example, consider the CDFG shown in Fig-
ure 4. The path lengths (PL) in Figure 4 are PL(Path;) =
PL(Pathy) = 18 cycles, PL(Paths) = PL(Paths) = 13. The
corresponding execution frequencies are shown in parenthe-
ses. Though PL(Path;) > PL(Paths), Path 3 is the critical
path of the CDFG from Algorithm 1.

N
() 4 |
\X) 4oce

Path 43

(i—) 1cycle

Figure 4. Critical Path Determination in a
CDFG

CSM estimates “optimal” clock for each DDG (an input
to the algorithm) of the CDFG. Hence, for each DDG the

clock frequency should be set equal to the local optimum.
However, such dynamic tuning is non-trivial and infeasi-
ble. On the contrary, Algorithm 1 determines global opti-
mal clock corresponding to the critical path of the CDFG.
Our experiments, Section 4.1, show the effectiveness of our
approach.

Critical path is determined with a variant of the Dijk-
stra’s algorithm [25]. A Fibonacci heap implementation of
the priority queue yields a time complexity O(E +VlogV),
where V is the number of vertices and E is the number of
edges in the CDFG. The overall complexity of Algorithm 1
is O((E +VlogV) +kv), where v is the number of vertices
in the critical path and k is given by

N A

A represents the increment in clock period in the for loop in
Algorithm 1.

3.2 Estimation of Execution Time Upper-
bound

In our methodology, we model ports as resources like
other functional units (FUs). Read and write ports have dis-
tinct resource identities. We developed the Resource Use
Method (RUM) (Algorithm 2) to encapsulate the effect of
port contention on execution time.

A ready_list (enclosed by dashed lines in Figure 5) is
defined as a set of data independent operations in a basic
block. Upper bound on execution time of a basic block,
UB(BB;), is a maximum of the multiple upperbounds re-
sulting from individual resource constraints. First, we com-
pute FU constrained upperbound UBgy for a ready_list. We
account for FUs of both types - pipelined/non-pipelined.
Then, we compute port-constrained upperbound of the
ready_list, denoted by UBpyt. For the same, we com-
pute memory-bound, denoted by UBporty,,, and register-
bound, denoted by U BPortre UPPET bounds. Read and write
port constraints affect the latter independent of each other.
Therefore, we compute RFeaq and RFurite, Which corre-
spond to read and write port requirements for parallel ex-
ecution of all operations in a ready list respectively. In
case of non-pipelined FUs we assume that data needs to be
latched for the entire delay of the operation. We encapsu-
late the multi-cycle port occupancy of non-pipelined FUs by
weighing r f,p(9) with delay(9), where & € (@ — {Id,st}).
Note that write port requirement of a MIMO (multiple-input
multiple output FU), rfyp(8), is more than one. Let us
walk through an example for better understanding of Al-
gorithm 2.

Algorithm 2 Resource Use Method

UB(BB;)=0
for each ready list in BB; do
for eachOp @ € ® do
/* Compute FU constrained upperbound */
if pipelined then

ddl
UBFu(9) = U?ﬂ(w x pipe-;gé%@]
else
UBru (@) = ([242 x delay(g))
end if
end for

UBry = vm(pgé UBFu (¢)

/* Compute port constrained upperbound */
Bt~ ([R5 | * o)

VBt = (| moarss | x delay(st))

mem(read) ’ mem(write))

[*LetW =d—{Id,st}*/
if pipelined then
RFead = 3 (rfrp(9) x occur(d))

W
else
RFead = ¥ (rfrp(8) x occur(9)) x delay(d)
W
end if

decW

— | PFead _
UBPortreg(ream - ’Vnum(i’(fread)_‘

UBport RFurite —‘

reg(write) = lrm
U BPOFtreg = max (U Bportreg(read) ;U Bportfeg(write))
UBport = max (UBportyen, U BPortReg)

UB(BB;) += max (UBgy,UBpurt)

end for
Where:
num(Mread) = Number of memory read ports.
num(Mwrite) = Number of memory write ports.

NUM(R F reaq) = Number of register file read ports.
nuM(R F wite) = Number of register file write ports.

pipe_stages(®) = Number of pipeline stages in Op(®)

r frp(9) = number of read ports required by Op(&)
fore.g. add r2,r1,r0 — rfyp(add) =2
addir2,r1,2 — rfip(addi)=1

I fwp(9) = Number of write ports required by Op(9).
occur (@) = Number of occurrences of @in a ready list.

&

@ E&®

&

RO

— (R
—
B-®
©-@&®
(R
-E@®

G;\
@ @@

@
BTG
@
&

'@G<
&g

Figure 5. DDG of the function predict_state

Operator + x Id st R ¥ read | R F write | Mread | Mwrite

Del cles) 4 5 4 4
ay (cycles) 4 2 2 1

4 3 2 2

Table 2. Hardware Library

Example2 Consider the DDG (from the predict_state
function of Kalman Filter) shown in Figure 5 with resource
library given in Table 2.

Here we assume non-pipelined units. Let us consider
ready list 1. The resource-constrained upperbound is

occur(x)

VPR = {W

-‘ x delay(x) = 20 cycles

The port-constrained upperbound is determined as follows

RFread = rfip(x)-occur(x)-delay(x)
= 2-12-5=120
RFrea _
U Bportreg(read) = num(i’(f(:ead) =30
_ RFuri _
UBPorteguriiey = Tum(x 7 o) —
Thus,
UBpoyt = U BPortReg
= max (U Bportreg(raad)) U Bportreg(write))
30 cycles

Note that UBport > UBgy. Thus,
UB = max (UBpyt,UBgy) = 30 unlike OUM which re-
ports an upperbound of 20 cycles (= UBgy).

Example 2 highlights the fact that execution time may be
bounded due to port contention irrespective of the amount
of computing power available.

Complexity of the Algorithm 2 is bounded by the loop
which computes UBgy as this loop is repeated for each op-
eration type. Generation of all the ready lists of DFG does
not take more than O(n) time, so the overall complexity of
the algorithms is O(mn), where n is the number of nodes
(operations) in the DFG and m is the number of operation
types. In practice m is small, hence effective time complex-
ity of Algorithm 2 is O(n).

4 Results

In this section, we present experimental results for opti-
mal clock selection and our exploration results for the effect
of port constraints on execution time. The resource library
for the estimation of upper bound was specified in a manner
S0 as to support maximum concurrency. The upperbound
estimates presented in Sections 4.2, 4.3 correspond to the
entire application and were obtained by a weighted sum-
mation of the upperbounds of individual basic blocks. The
weight of each basic block corresponds to it’s execution fre-
quency which in turn was obtained by profiling the applica-
tion. We validate our estimates against synthesis results in
Section 4.4.

4.1 Optimal Clock Estimation

In Table 3, we present quantitative analysis of CPSM and
CSM. The critical path execution time was used as a mea-
sure of “quality” of the clock estimate. Clock utilization ()
is determined by calculating the total clock slack, Q, along
the critical path. From Table 3 we observe that Clkop; ob-
tained from CPSM vyields better clock utilization. We note
that in most cases the optimal clock period is guided by the
frequency of different operation types i.e. an application
with “heavy” load(+) has Clkop ~ delay(+). However, in
cases like Pipelined FIR Filter, where the number of differ-
ent operation types is evenly distributed, the optimal clock
period does not correspond to the delay of any FU.

We also analyzed the effect of clock selection on
static power consumption. For the same, we synthesized
the applications for the two different clock frequencies -
ClKoptpgy @nd ClKkopt.q, - As expected, at higher frequency -
ClKoptepgy - Clock utilization increases, but power consump-
tion also increases®. So, clock selection should be made in
conjunction with the associated performance-power trade-
off.

Thus, CPSM scores over CSM in both - minimizing exe-
cution time and maximizing clock utilization. Therefore,
CPSM-based optimal clock selection is imperative from
performance point of view.

4.2 Effect of Register File Port Constraint

Table 4 lists the estimates of upperbound on execution
time for different register file port configurations. Each col-
umn corresponds to a different port configuration, given by
the tuple — <# of read ports, #of write ports >. We ob-
serve a decrease in upperbound estimates with increase in
number of ports. This can be attributed to the fact that mul-
tiple ports support parallel read/write, thus enhancing par-
allel execution. Note that the upper bound corresponding to

INote that power consumption isafunction of both - critical path length
and clock period.

CPSM | csMm | | CPSM | Csm | | CPSM | Csm
Optek (ns) 49 56 Optgk (N9 48 56 Optgk (N9 16 49
ADPCM n 93.19 90.69 ADPCM n 95.87 91.69 Elliptic Wave [94.71 91.37
Coder Power (W) 146.7 56.44 Decoder Power (LW) 124.8 483 Filter Power (W) 483 185
Optek (ns) 14 56 Optgk (ns) 48 74 Optgk (ns) 56 74
Pipdlined FIR
Filter n 97.51 96.86 Wavelet n 93.09 86.73 Kaman " 96.2 91.33
Power (W) 35.60 2143 Power (W) 41.17 29.60 Filter Power (W) 796 412
Optek (ns) 19 74 Optgk (ns) 49 74 Optgk (N9 48 56
Differential .
Equation n 97.13 91.44 FFT n 96.30 93.55 Cubic n 95.89 91.23
Power (W) 384 225 Power (W) 39.8 244 Power (LW) 54.4 324
Table 3. Optimal Clock Estimation
RUM (cycles) OUM (cycles)
Benchmark (R 7 read & % write) (Mread Mwrite)
2,) (4,2) (44 (6,5 22) (4,2) (4,4) (6,5
ADPCM Coder 1.85e+7 1.35e+7 131e+7 1.29%e+7 1.45e+7 1.36e+7 1.29e+7 1.29e+7 1.29%+7
ADPCM Decoder 167e+7 1.20e+7 11le+7 1.08e+7 1.23e+7 1.13e+7 1.08e+7 1.08e+7 1.08e+7
Elliptic Wave Filter 270 146 110 98 244 146 98 98 98
Pipelined FIR Filter 480 286 164 164 380 272 164 164 164
Wavelet 2320 1180 580 580 1020 860 648 580 580
Kalman Filter 3680 1920 1010 768 912 840 768 768 768
Differential Equation 90 52 44 44 76 64 44 44 44
FFT 536 312 264 212 286 244 212 212 212
Cubic 4430 2460 1446 970 1284 1196 1120 1120 1120

Table 4. Effect of (R 7 reads R F write) @Nd (M read, Murite) ON Upper Bound

the configuration (6,5) is not the lower bound on execution
time. Instead, it reflects the parallelism embedded in the ap-
plication (compare it with the upper bound estimate for the
configuration (2,1)). The lower bound on execution time
can be found using [15, 16, 17] or by scheduling techniques
[26].

Our experimental results reflect the amenability of the
Resource-Use Method (RUM) algorithm to different port
configurations. In contrast, we note that the Operator-
Use Method (OUM) is insensitive to varying number of
read/write ports. It reports upperbound on execution time
corresponding to maximum parallelism case, which is not
applicable in most cases.

From Table 4, we observe that for most benchmarks
there is minimal gain in performance with increase in num-
ber of register file ports from (4,4) — (6,5). Thus, the
upperbound estimate of execution time for different port
configurations can be used to assess application level paral-
lelism. Such estimates aid in making early design decisions
in the design of application specific SoCs.

4.3 Effect of Memory Port Constraint

Table 4 also lists the estimates of upperbound on execu-
tion time for different memory port configurations. Each
column corresponds to a different port configuration, given
by the tuple — <# of read ports, #of write ports >. Un-
like Section 4.2, we note that degree of parallel execution
(largely influenced by parallel memory read/write) deter-

mines the execution time upperbounds. From Table 4 we
note that there is no gain in performance (except Wavelet)
with increase in number of memory ports from (4,4) —
(6,5).

It is interesting to note that the impact of parallel mem-
ory read/write is less prominent than register file read/write.
This highlights the need for application analysis to mini-
mize the trade-off associated with port assignment to regis-
ter file and memory.

4.4 Validation

We developed synthesizable RTL descriptions (in
VHDL) of the benchmarks taken from Mediabench [3],
Mibench [2] suite. We used Synopsys Design Compiler
(DC) [27] to synthesize the HDL descriptions using LSI
10K technology libraries to obtain metrics like critical path
length, and chip area. We validated our estimates with the
synthesized values. Table 5 presents a quantitative compar-
ison between the #wzst’s upperbound estimates and syn-
thesized values of the kernel of each benchmark. In these
experiments, we assume 4 read and 4 write ports in register
file and memory.

From Table 5, we see that our bounds are 20-30% off
from the synthesized values. However, such deviation is
expected because it is an upperbound and also generated at
much higher level of abstraction. In spite of that, its util-
ity in pruning the design space is invaluable. Moreover, the
lower run time (by over two orders of magnitude) per explo-
ration cycle makes #wzst-based performance estimation of
candidate architectures ideal for rapid DSE.

HwEst DC % Runtime (s)

Benchmark (cydles) (ns) ns) error HuwEst DC
ADPCM coder 47 235 200.64 17.13 517 636.1
ADPCM decoder 29 145 120.69 16.77 425 390.4
Elliptic Wave Filter 25 125 94.85 2412 371 380.1
Pipelined FIR Filter 27 135 95.67 29.13 373 370.6
Wavelet 37 185 14541 214 441 5779
Kalman Filter 18 90 735 22.69 361 3731
Differentia Equation 31 155 115.12 25.73 425 420.3
FFT 33 165 140.86 22.69 43 456.3
Cubic 17 85 63.75 348 329 390.4

Table 5. Validation of Upperbound Estimates

5 Conclusion

We presented improved algorithms for optimal clock es-
timation and estimation of upperbound on execution time.
Number of memory and register file ports have also been
considered for estimation of execution time. This algorithm
can be used to quickly evaluate a very large design space
created by variety of resource allocations. Our experimental
results show that our clock estimation algorithm improves
clock utilization and there is an acceptable correspondence
between estimation and synthesis results for upperbound on
execution time.

Our future work will focus on communication cost es-
timation and power consumption estimation along with its
integration to #wEst.

References

[2] ftp://ftp.ics.uci.edu/pub/hlsynth/H.Synth92/.
[2] Mibench. http://ww. eecs. um ch. edu/ ni bench/ .

[3] Mediabench. newblock http://cares.icsl.ucla.edu/
Medi aBench/ .

[4] S. Note, W. Geurts, F. Catthoor, and H. De Man.
Cathedral-111: Architecture-driven high-level synthesis for
high throughput DSP applications. In Proc. of the 28th De-
sign Automation Conf., pages 597—602, 1991.

[5] S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber,
and T. Sherwood. Bitwidth cognizant architecture syn-
thesis of custom hardware accelerators. |EEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
20(11):1355-1371, November 2001.

[6] J. Staunstrup and W. Wolf. Hardware-Software Co-Design
of Embedded Systems: The POLIS Approach. Kluwer Aca
demic Publishers, 1997.

[7] Ptolemy: Heterogeneous Modeling, Simulation, and De-
sign of Concurrent Systems. http://ptol eny.eecs.
ber kel ey. edu/ .

[8] J.-M. Chang and M. Pedram. Codex-dp: Co-design of Com-
municating Systems Using Dynamic Programming. |EEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 19(7):732—744, July 2000.

[9] M. K. Jain, M. Bdakrishnan, and A. Kumar. An effi cient
technique for exploring register fi le size in ASIP synthesis.
In Proc. of the Intl. Conf. on Compilers, Architecture and
Synthesis for Embedded Systems (CASES 02), pages 252—
261, October, 2002.

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]
[29]

[26]

[27]

E. Macii, M. Pedram, and F. Somenzi. High-level Power
Modeling, Estimation, and Optimization. | EEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, 17:1061-1079, November 1998.

C. Jego, E. Casseau, and E. Martin. Interconnect cost con-
trol during high-level synthesis. In Proceedings of Design
Circuits & Integrated Systems Conference, pages 507-512,
November 2000.

A. C. Parker, T. Pizzaro, and M. Mlinar. MAHA : A program
for datapath synthesis. In Proc. of the 23rd Design Automa-
tion Conf., pages 461466, July 1986.

T. Yoda and A. Takahashi. Clock Period Minimization of
Semi-Synchronous circuits by Gate-Level Delay Insertion.
IEICE Transactions Fundamentals, E82-A(11):2383-2389,
November 1999.

En-Shou Chang, D. Ggjski, and S. Narayanan. An optimal
clock period selection method based on slack minimization
criteria. ACM Transactions on Design Automation of Elec-
tronic Systems, 1(3):352—370, July 1996.

G. Tiruvuri and M. Chung. Estimation of Lower Bounds
in Scheduling Algorithms for High-Level Synthesis. ACM
Transactions on Design Automation of Electronic Systems,
3(2):162—180, April 1998.

S. Y. Ohm, F. J. Kurdahi, and N. Dutt. A Unified
Lower Bound Estimation Technique for High-Level Synthe-
sis. |EEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 16(5):458-472, May 1997.

M. Narasimhan and J. Ramanujam. On lower bounds for
scheduling problems in high-level synthesis. In Proc. of the
37st Design Automation Conf., pages 546-551, June 2000.

S. Chaudhuri and R. Walker. Computing lower bounds on
functional units before scheduling. 1EEE Transactions on
Very Large Scale Integration Systems, 4(2):273-279, June
1996.

A. Sharma and R. Jain. Estimating architectural resources
and performance for high-level synthesis applications. IEEE
Transactions on Very Large Scale Integration Systems,
2(1):175-190, June 1993.

N. Dutt, D. Gajski, A. Wu, and S. Lin. High Level Synthesis:
Introduction to Chip and System Design. Kluwer Academic
publishers, 1992.

J. Gong, Danid D. Gajski, and A. Nicolau. A Performance
Evaluator for Parameterized ASIC Architectures. In Euro-
pean Design Automation Conference, pages 66—71, 1994.

http://suif.stanford.edu/suif/suif2/index.htm.

http: //ww. eecs. harvard. edu/ hube/ r esear ch/
machsui f. htm .

The MDES user manual. http://www.trimaran.org/.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press and McGraw-
Hill Book Company, second edition, 2001.

S. Novack and A. Nicolau. Trailblazing: A hierarchical ap-
proach to percolation scheduling. In Proc. Intl. Conf. on Par-
allel Processing, pages 120124, 1993.

Synopsys. htt p: / / ww. synopsys. com

