
1

Mary Jean Harrold
ADVANCE Professor of Computing

College of Computing
Georgia Institute of Technology

Testing Evolving Software
Current Practice and Future Promise

Problems for Evolving Software

Estimating
evolution

(maintenance)
costs

Updating
requirements,
design, code,

documentation

Managing
software

repositories

Estimating
evolution

(maintenance)
costs

Updating
requirements,
design, code,

documentation

Predicting
faulty parts
of modified

system

Managing
software

repositories

Predicting
faulty parts
of modified

system

2

Problems for Evolving Software

Estimating
evolution

(maintenance)
costs

Updating
requirements,
design, code,

documentation

Managing
software

repositories

Estimating
evolution

(maintenance)
costs

Updating
requirements,
design, code,

documentation

Predicting
faulty parts
of modified

system

Managing
software

repositories

Predicting
faulty parts
of modified

system

Testing
modified
software

Testing
modified
software

Regression
testing

Testing Evolving Software

• Interest

• Problems
• Achievements
• Challenges

• Industry—academic collaboration

3

Collaborations
• Borden Chemical
• Data General Corp

(now part of EMC)
• Lucent Technologies
• Microsoft

• Boeing Aerospace
• NASA
• Reflective Corporation
• Tata Consultancy

Services (TCS)
• Worldspan

Kinds of software
• Accounting
• Banking
• Financial
• Healthcare
• Insurance
• Airplane
• Automotive
• Medical devices
• Spacecraft
• Operating systems
• Telecommunications
• Web services

Collaboration With Industry
Common Problem
• Changes require rapid modification and testing for

quick release
• Causing released software to have many defects

Approach
• Concentrate testing around the changes
• Automate the regression testing process

Research Question
How can we test well to gain confidence in the
changes in an efficient way before release of
changed software?

Research Question
How can we test well to gain confidence in the
changes in an efficient way before release of
changed software?

Modify
P

Select subset
of T to rerun Execute

Identify
faults

Release P
T

F

Program
P

Develop T
for P

Assess
adequacy

F

Monitor to
improve
quality

T

Augment T
for untested
adequacy

requirements

Assess
outcome

Testing Evolving Software

4

Modify
P

Select subset
of T to rerun Execute

Identify
faults

Release P
T

F

Program
P

Develop T
for P

Assess
adequacy

F

Monitor to
improve
quality

T

Assess
outcome

Testing Evolving Software

Select subset
of T to rerun

Assess
adequacy

Augment T
for untested
adequacy

requirements

Augment T
for untested
adequacy

requirements

• Present problem

• Overview current status,
achievements

• Discuss challenges and
open issues

Testing Evolving Software

Select subset
of T to rerun

Assess
adequacy

Augment T
for untested
adequacy

requirements

5

Testing Evolving Software

Assess
adequacy

Augment T
for untested
adequacy

requirements

Select Subset of T to Rerun

P’ Version
of P

Program
P T

Select Subset of T to Rerun

6

P’ Version
of P

Program
P T

Select Subset of T to Rerun

Which test cases in T
should be rerun to test
P’?

P’ Version
of P

Program
P T

T-T’

T’

T’

Select Subset of T to Rerun

Which test cases in T
should be rerun to test
P’?

Solution
Partition T into two
subsets

• run one on P’
• don’t run the other

7

G G’
Dangerous

edge

3. Build G’ and compare G and
G’ to find dangerous entities

doCdoB
1 2 1 2

1. Construct representation G
for P

if()

doBdoA

G
1 2

T F

2. Associate test cases in
T with entities in G

X

t3

Xe2
Xe1

t2t1TC
edgeM

4. Select test cases based
on dangerous entities

X

t3

Xe2
Xe1

t2t1TC
edgeM

Select Subset of T to Rerun

Select Subset of T to Rerun

• Procedural
• Object-oriented
• Database
• Web-based

Program
P

• Code
• Requirements
• Architectural
• Other models—e.g.,

UML

8

Goal: To determine savings in execution time
Subjects

Procedure
For each pair of versions vi, vi+1, measure

A. Time to re-run vi+1 on all test cases in T
B. Time to select T’ + Time to run T’ on vi+1

Compare times
• Save if B < A

Test CasesKLOCProceduresVersonsC Program
1033507665Empire

639~1K2,4035JBoss
2001678245Daikon

Test CasesKLOCClassesVersionsJava Programs

Empirical Studies

Savings in Testing Time Using DejaVOO

0%

20%

40%

60%

80%

100%

V2 V3 V4 V5 V2 V3 V4 V5 V2 V3 V4 V5

Empire Daikon Jboss

Te
st

in
g

tim
e

(p
er

ce
nt

ag
e)

Time to run all tests in T Time to select T’ + Time to run selected tests

9

Savings in Testing Time Using DejaVOO

0%

20%

40%

60%

80%

100%

V2 V3 V4 V5 V2 V3 V4 V5 V2 V3 V4 V5

Empire Daikon Jboss

Te
st

in
g

tim
e

(p
er

ce
nt

ag
e)

Time to run all tests in T Time to select T’ + Time to run selected tests

Savings in Regression
Testing Time

Empire: 93%
Daikon: 36%
Jboss: 63%

P’ Version
of P

Program
P T

T-T’

T’

T’T’

Select Subset of T to Rerun
What if

• T’ has too many test
cases for allotted time?

• want to run most
important test cases
in T’ first?

10

P’ Version
of P

Program
P T

T-T’

T’T’

Select Subset of T to Rerun
What if

• T’ has too many test
cases for allotted time?

• want to run most
important test cases
in T’ first?

Solution
Order (prioritize) T’

• find faults earlier
• get coverage earlier
• etc.

T’t1, t2, …, tnti, tj, … , tm

Achievements: Research

• Application to different models of the
system

• Empirical evidence of effectiveness on
different kinds of programs written in
various languages

• Evidence of the effectiveness of
techniques that use simple program
information

11

Achievements: Commercialization

Google Testar
• Selective testing tool for Java
• Works with JUnit
• Records coverage data about JUnit

tests by instrumenting bytecode
• Computes, stores, and compares

checksums to identify changes
• Also computes and reports coverage of

methods

Challenges

Good selection/prioritization techniques
• Regression testing at the system level
• Systems with nondeterministic behavior
• Systems that are developed by distributed teams

Transfer of techniques to industry
• Automation of regression testing
• Gathering information required for selection and

prioritization
• Integrating into existing testing toolsets being used

in industry

12

Testing Evolving Software

Augment T
for untested
adequacy

requirements

Assess Adequacy

Select subsetSelect subsetSelect subset
of T of T of T to rerunto rerunto rerun

P’ Version
of P

Program
P T

T-T’

T’T’

Assess Adequacy

T’’

How well do T, T’,T’’ or
any test suites exercise P’
with respect to changes?

T’

How well do T, T’,T’’ or
any test suites exercise P’
with respect to changes?

Do the test cases
exercise the changes so
that they will affect
execution?

13

Program and Modified Version

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0)
S5 return(n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

Procedure Avg’
S1’ count = 0
S2’ fread(fptr,n)
S3’ while (not EOF) do
S4’ if (n<=0)
S5’ return(n)

else
S6’ nums[count] = n
S7’

endif
S8’ fread(fptr,n)

endwhile
S9’ avg = mean(nums,count)
S10’ return(avg)

Program and Modified Version

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0)
S5 return(5/n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

Procedure Avg’
S1’ count = 0
S2’ fread(fptr,n)
S3’ while (not EOF) do
S4’ if (n<=0)
S5’ return(n)

else
S6’ nums[count] = n
S7’

endif
S8’ fread(fptr,n)

endwhile
S9’ avg = mean(nums,count)
S10’ return(avg)

Criteria for change-
impact propagation

• Execution of the
change

DejaVOO (and
other criteria for
changes) require
execution of the
change

14

Program and Modified Version

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0)
S5 return(5/n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

Procedure Avg’
S1’ count = 0
S2’ fread(fptr,n)
S3’ while (not EOF) do
S4’ if (n<=0)
S5’ return(n)

else
S6’ nums[count] = n
S7’

endif
S8’ fread(fptr,n)

endwhile
S9’ avg = mean(nums,count)
S10’ return(avg)

Criteria for change-
impact propagation

• Execution of the
change

DejaVOO (and
other criteria for
changes) require
execution of the
change

Criteria for change-
impact propagation

• Execution of the
change

• Infection of the state
after change

• Propagation of state
to output where it
can be observed

No existing
criteria require
infection and
propagation of
the change

Program and Modified Version

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0)
S5 return(5/n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

Criteria for change-
impact propagation

• Execution of the
change

Criteria for change-
impact propagation

• Execution of the
change

• Infection of the state
after change

• Propagation of state
to output where it
can be observed

Our new technique
aims to add these
requirements to the
change criteria

15

Compute Change Testing Requirements

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0) if (n<=0)
S5 return(n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

Compute Change Testing Requirements

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0) if (n<=0)
S5 return(n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

S4
Infection: Path

condition in Avg after
S4 and path condition
in Avg’ after S4’ differ

Condition for infection:
(n<=0) and not (n<0)

n must be 0 after S4’

16

Compute Change Testing Requirements

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0) if (n<=0)
S5 return(n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

S7
Infection: Value of state

after execution of S7 in
Avg and S7’ in Avg’ must
differ

Condition for infection:
After
• S7 in Avg,

count=count+1
• corresponding location

in Avg’, count=count
count≠count+1,
any value of count

Compute Change Testing Requirements

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0) if (n<=0)
S5 return(n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

N0true

SS(n)PC

N0true
SS’(n)PC’

Infection

PC—path condition
SS—symbolic state

Perform symbolic
execution from before
change to get
conditions

Avg Avg’

17

Compute Change Testing Requirements

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0) if (n<=0)
S5 return(n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

N0(N0<0)
or

(N0>=0)

N0true

SS(n)PC

N0(N0<=0)
or

(N0>0)

N0true
SS’(n)PC’

Infection

PC—path condition
SS—symbolic state

Perform symbolic
execution from before
change to get
conditions

Avg Avg’

Compute Change Testing Requirements

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0) if (n<=0)
S5 return(n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

N0(N0<0)
or

(N0>=0)

N0true

SS(n)PC

N0(N0<=0)
or

(N0>0)

N0true
SS’(n)PC’

Propagation
Avg Avg’

18

Compute Change Testing Requirements

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0) if (n<=0)
S5 return(n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

N0(N0<0)
or

(N0>=0)

temp
= 5/N0

(N0<0)

N0true

SS(n)PC

temp
= 5/N0

(N0<=0)

N0(N0<=0)
or

(N0>0)

N0true
SS’(n)PC’

Propagation
Avg Avg’

Compute Change Testing Requirements

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0) if (n<=0)
S5 return(n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

N0(N0<0)
or

(N0>=0)

temp
= 5/N0

(N0<0)

N0true

SS(n)PC

temp
= 5/N0

(N0<=0)

N0(N0<=0)
or

(N0>0)

N0true
SS’(n)PC’

Propagation
Avg Avg’

19

Propagation
Avg Avg’

Compute Change Testing Requirements

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0) if (n<=0)
S5 return(n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

N0(N0>=0)
and so on

N0(N0<0)
or

(N0>=0)

temp
= 5/N0

(N0<0)

N0true

SS(n)PC

N0(N0>0)

and so on

temp
= 5/N0

(N0<=0)

N0(N0<=0)
or

(N0>0)

N0true
SS’(n)PC’

Propagation
Avg Avg’

Compute Change Testing Requirements

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0) if (n<=0)
S5 return(n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

N0(N0>=0)
and so on

N0(N0<0)
or

(N0>=0)

temp
= 5/N0

(N0<0)

N0true

SS(n)PC

N0(N0>0)

and so on

temp
= 5/N0

(N0<=0)

N0(N0<=0)
or

(N0>0)

N0true
SS’(n)PC’

But

• symbolic execution on the entire
program is expensive

• may not scale to large programs

• etc.

Our technique has two ways to
improve efficiency

20

Propagation
Avg Avg’

Compute Change Testing Requirements

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0) if (n<=0)
S5 return(5/n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

N0(N0>0)
and so on

N0(N0<0)
or

(N0>=0)

temp
= N0

(N0<0)

N0true

SS(n)PC

N0(N0>=0)

and so on

temp
= N0

(N0<=0)

N0(N0<=0)
or

(N0>0)

N0true
SS’(n)PC’

1. Perform partial symbolic execution (PSE)
beginning immediately before the change

• computes conditions in terms of variables
immediately before change

• avoids symbolic execution from beginning
of program to change

1. Perform partial symbolic execution (PSE)
beginning immediately before the change

• computes conditions in terms of variables
immediately before change

• avoids symbolic execution from beginning
of program to change

Don’t need to solve conditions—can still
monitor for their satisfaction

AVG AVG’

Compute Change Testing Requirements

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0) if (n<=0)
S5 return(5/n)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

N0(N0>0)
and so on

N0(N0<0)
or

(N0>=0)

temp
= 5/N0

(N0<0)

N0true

SS(n)PC

N0(N0>=0)

and so on

temp
= 5/N0

(N0<=0)

N0(N0<=0)
or

(N0>0)

N0true
SS’(n)PC’

Propagation2. Perform PSE for some specified distance (user
selected) instead of to output statements

• computes conditions on states at
intermediate points (i.e., distances)

• bounds depth using slicing-like
dependences, avoids symbolic execution to
outputs

2. Perform PSE for some specified distance (user
selected) instead of to output statements

• computes conditions on states at
intermediate points (i.e., distances)

• bounds depth using slicing-like
dependences, avoids symbolic execution to
outputs

Greater distances improve confidence in
propagation to output

21

P

si

P end

P’

si’ change

P’ end

1. PSE—conditions
in terms of
variables at point
before change

Compute Change Testing Requirements

P

si

P end

P’

si’ change

P’ end

1. PSE—conditions
in terms of
variables at point
before change

relevant
variables

relevant
variables

Compute Change Testing Requirements

22

P

si

P end

P’

si’ change

P’ end

1. PSE—conditions
in terms of
variables at point
before change

2. Distance is N
data and control
dependences
from change
(slicing like)

relevant
variables

relevant
variables

Distance is 0

Compute Change Testing Requirements

P

si

P end

P’

si’ change

P’ end

1. PSE—conditions
in terms of
variables at point
before change

2. Distance is N
data and control
dependences
from change
(slicing like)

relevant
variables

relevant
variables

Distance is 1

Compute Change Testing Requirements

23

P

si

P end

P’

si’ change

P’ end

1. PSE—conditions
in terms of
variables at point
before change

2. Distance is N
data and control
dependences
from change
(slicing like)

relevant
variables

relevant
variables

Distance is 2

Compute Change Testing Requirements

Insert Probes to Record Coverage

Procedure Avg’
S1’ count = 0
S2’ fread(fptr,n)
S3’ while (not EOF) do
S4’ if (n<=0)
S5’ return(n)

else
S6’ nums[count] = n
S7’

endif
S8’ fread(fptr,n)

endwhile
S9’ avg = mean(nums,count)
S10’ return(avg)

To record adequacy
(coverage of conditions)

Instrument modified program
so that probes check for
satisfaction of condition
before change (e.g.,
before S4’ and before
S7’)

24

Goal: To compare the effectiveness of our
changed-based criterion with statement-based
criterion

Subjects: Tcas (4 versions) and Schedule (3 versions)
(each version has one fault)

Procedure:
• Randomly generated 50 test suites per criterion
• Recorded the number of test suites that produce

different outputs

Empirical Study

0

20

40

60

80

100

v2 v3 v4 v5 v2 v3 v4
Tcas Schedule

Criteria Effectiveness Using MaTRIX

Pe
rc

en
ta

ge
 re

ve
al

in
g

di
ffe

re
nt

 b
eh

av
io

rs

0%

20%

40%

60%

80%

100%

stmt

change-based

d0 d1 d2

25

Achievements: Research

• New change test criteria
• show promise for assessing adequacy of

test suite around changes
• can be performed on large programs since

only area around change being evaluated
• empirical evaluation encouraging

Challenges

Computing change impact criteria still in
very early stages
• Handling multiple and interacting changes
• Implementing PSE efficiently
• Determining good distance (empirically)
• Tracking impact dynamically to check for

propagation to end of program
• Creating strategy to handle false positives
• Others??

26

Testing Evolving SoftwareAugment T for … Requirements

Select subsetSelect subsetSelect subset
of T of T of T to rerunto rerunto rerun

AssessAssessAssess
adequacyadequacyadequacy

P’ Version
of P

Program
P T

T-T’

T’T’

T’’T’

How can we get test cases
to satisfy unsatisfied
conditions?

Augment T for … Requirements

27

Augment T for … Requirements

• Unsatisfied conditions can be used by
developers to create new test cases

• Automatically generate test cases to
satisfy conditions
• Use of regression test suite to generate

new inputs to satisfy change test
requirements

• Dynamic information provides concrete
values to guide symbolic execution

• Extension of existing work in concolic test
data generation

Challenges

• Generating test cases to satisfy
conditions
• may use regression test suite and apply

existing techniques
• ensure that the techniques are efficient for

large programs

28

Modify
P

Select subset
of T to rerun Execute

Identify
faults

Release P
T

F

Program
P

Develop T
for P

Assess
adequacy

F

Monitor to
improve
quality

T

Augment T
for untested
adequacy

requirements

Assess
outcome

Testing Evolving Software

Select subset
of T to rerun

Augment T
for untested
adequacy

requirements

Assess
adequacy

Modify
P

Select subset
of T to rerun Execute

Identify
faults

Release P
T

F

Program
P

Develop T
for P

Assess
adequacy

F

Monitor to
improve
quality

T

Augment T
for untested
adequacy

requirements

Assess
outcome

Industry-Academic Collaboration

Select subset
of T to rerun

Augment T
for untested
adequacy

requirements

Assess
adequacy

Collaboration with
• Data General (EMC)

• Microsoft

• Boeing Commercial
Airplanes

• Tata Consultancy
Services, Ltd. (TCS)

Top 7 lessons learned

29

Top 7 Lessons Learned

1. To solve real problems, need to interact
with industry on a regular basis

2. To incorporate new testing technology
often requires extensive change in
process, so difficult to achieve

3. To show effectiveness, techniques must
be evaluated on real systems

4. To evaluate, prototype must integrate into
industrial environment

Top 7 Lessons Learned

5. To get developers’ help in evaluation,
prototype must be usable for them

6. To get the evaluation done, need internal
champion and internal developer needed
for experimentation

7. To discover important problems, many
ideas for interesting research emerge
from collaborations

30

Summary

• Regression testing approach
• Concentrate testing around the changes
• Automate as much as possible

• Components
• Regression test selection and prioritization
• Test-suite adequacy assessment
• Test-suite augmentation to satisfy

adequacy requirements

Promise for Testing Evolving Software

We’re making progress on automating the
regression testing process

By continuing to work on these and related
problems, and collaborating with industry,
we will be able to automate regression
testing

Thereby providing a way to test well around
changes efficiently, provide confidence in
the software, and eliminate many defects

31

Questions?

