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Abstract—Image Classification is one of the most important
Machine Learning tasks, especially in this digital era. Though
there exists classical algorithms which have performed quite well
in multi-class classification tasks, classification using quantum
architectures have mostly been limited to 2 or 3 classes. As
the number of classes increased, the existing architectures did
not achieve good accuracy. In this work, we aim to classify the
MNIST dataset into 10 corresponding classes, using classical-to-
quantum transfer learning. We performed both binary as well
as multi-class classification using the hybrid architecture which
yielded a maximum accuracy of approximately 100% and 90.4 %
respectively.

I. INTRODUCTION

Quantum Systems are presenting an unprecedented era of
computations with the use of subatomic level of particles to
process data. Unlike classical computation here the informa-
tion is being represented as qubits which is superposition of
classical bits and hence they present much more processing
power than their traditional counterparts. Quantum computers
have shown a lot of potential even at its nascent stage, but
now as the quantum hardware improves and this area is
being explored to further extents to revolutionize the future
of computational tasks.

With the size of datasets constantly growing and Moore’s law
coming to an end, we might soon reach a point where the
current computational tools will no longer be sufficient. By
carefully exploiting quantum effects such as interference or
(potentially) entanglement, quantum computers can efficiently
solve selected problems that are believed to be hard for
classical machines. [1] Quantum machine learning extends the
pool of hardware for machine learning by an entirely new type
of computing device—the quantum computer. [2]

Presently hybrid architectures, or structures involving both
quantum and classical computations, are also of much interest
as Quantum computers are at very early stage. Hybrid set-up
is typically a blend of “quantum” portion using a sequence
of quantum gates operating on sets of qubits running on a
quantum hardware, and a “classical” portion: with sequence
of instructions running on a classical binary bits on regular
computer.

Quantum Transfer Learning is one such hybrid architecture
which can reap the benefit of both quantum and classical
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domain.

Transfer Learning is the technique of reusing a pre-trained
model on a new yet related problem. Intuitively, it is much
easier for a cyclist to learn to ride a bike, than someone who
is untrained in cycling.

There have been few studies which have analysed Quantum
Transfer Learning architectures. Mari et al. [3] have proposed
different implementation of hybrid transfer learning, focusing
mainly on the paradigm in which a pre-trained classical
network is modified and augmented by a final variational
quantum circuit. Their work has shown that “dressed” quantum
circuit (“dressed” quantum circuit = classical pre-processing
+ quantum layer + classical post-processing) is a very flexible
quantum machine learning model capable of classifying highly
non-linear dataset. They have also explored the four different
transfer learning approaches for classification tasks, namely:

1) Classical-to-Classical

2) Classical-to-Quantum for classifying Ant/Bees and
Cats/Dogs

3) Quantum-to-Classical to encode 7 different 4 x4 images
by training only the final classical part

4) Quantum-to-Quantum for quantum state classification
(gaussian/non-gaussian)

Classical-to-Quantum transfer learning is particularly appeal-
ing since it opens the possibility to classically pre-process
large input samples (e.g., high resolution images) with any
state-of-the-art deep neural network and to successively ma-
nipulate few but highly informative features with a variational
quantum circuit. This scheme is quite convenient since it
makes use of the power of quantum computers, combined with
the successful and well-tested methods of classical machine
learning [3].

Acar and Yilmaz [4] have used ResNetl8 convolution net-
work as feature extractor followed by a quantum variational
classifier circuit to diagnose COVID-19 infected patients and
normal (healthy) patients from Computerized Tomography
(CT) images.

Soto-Pardes et al. [5] used the hybrid model of Quantum
Transfer Learning to classify images of faces into classes
identified as correct mask, incorrect mask and no mask. They
reached an accuracy of 99.05% using ResNet18 as the classic



transfer learning model and a variational quantum layer of 4
qubits.

Gokhale et al. [6] implemented a hybrid model using
ResNet50 pre-trained classical deep learning network and
quantum variational circuit to classify spliced versus authentic
images. Their comparative study showed an improvement in
the quantum transfer learning approach (accuracy : 85%) from
the classical implementation (accuracy : 80.57%)

Chalumuri et al. [7] proposed a quantum multi-class classi-
fier as a variational circuit with a hybrid classical-quantum
approach using quantum mechanical properties such as super-
position and entanglement. They use this model to classify
Iris dataset into 3 classes, Banknote Authentication dataset
into 2 classes, Wireless Indoor Localization dataset into 3
classes achieving accuracy of 92.10%, 89.50% and 91.73%
respectively.

It is observed, that though classical-to-quantum transfer learn-
ing approach is being explored, the work has mostly been
restricted to binary classification tasks. We wish to extend
the binary classification to a more generalized multi-class
classification tasks. To the best of our knowledge this is
the first attempt to use Quantum transfer learning for multi
class classification. For this we studied the classification of
the MNIST (Modified National Institute of Standards and
Technology) dataset (handwritten digits) into 10 corresponding
classes. We could achieve a maximum accuracy of 90.4%
when classifying digits into 10 corresponding classes, while an
accuracy close to 100% for several pairwise digit classification.
Since using few epochs and limited data we could achieve this
accuracy, we expect as the quantum resources improve, the
accuracy will be higher. We use Pennylane [8] to simulate our
models. Though we use simulators in this work, real quantum
hardware has limitations on the number of qubits, thus we
restrict ourselves to 4 qubits here.

Apart from this, we also wish to comprehend the behaviour
of different quantum circuits for the same classification task.

II. PROBLEM FORMULATION

Classifying handwritten digits with high accuracy has been
a research interest for several decades, especially in this era
of digital transformation. Classical Networks have performed
quite well in this task with accuracy almost as the human brain.
Islam et al. [11] implemented a multi-layer fully connected
neural network with one hidden layer for handwritten digits
recognition achieving an accuracy of 99.60% with test per-
formance. Gope et al. [12] applied different classical machine
learning algorithms such as Decision Tree Classifier, Support
Vector Machine(SVM), Random forest classifier, Naive Bayes,
K-Nearest neighbour algorithms to classify MNIST dataset
with the highest accuracy of 95% achieved using SVM.
But not much has been explored in the quantum domain. We
thus aim at comparing transfer learning models for binary
classification, followed by designing models for multiclass
classification using quantum computation.
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Fig. 1: A generic diagram of Classical-to-Quantum Transfer
Learning Model .

A. Transfer Learning

Transfer Learning refers to the method of reusing a trained
network for related but different task. This “transfers” the
knowledge gained from one domain to another.

Here, we use the Classical-to-Quantum Transfer Learning
approach to study the performance of the hybrid architecture
for our classification task. A schematic diagram has been
shown in Fig 1. The classical layer takes in input from the
classical domain, produces some intermediate classical output,
which is converted to the quantum domain. The quantum
circuit then processes this output, which is again converted
to classical measurement for human interpretation.

In this work, we have used ResNet18 as the classical Network,
since it is one of the most popular CNN (Convolutional
Neural Network) models for classification tasks. The ResNet18
network is a model pre-trained on ImageNet, from torchvision
package. Although in this work, we use only ResNetl8 as
the classical network, it would be interesting to explore other
versions such as ResNet50 in future work.

B. Approach Used for Binary Classification

We have designed hybrid models to classify each pair of
digits for binary classification. For a total of 10 classes, we had
45 such pairs of digits. We also compare the results obtained
by our binary classifier and the one shown in [3].

C. Approach Used for Multi-class classification

Since previous works ( [4], [6] ) have shown that the
quantum transfer learning architecture have performed quite
well for binary classification tasks, we use a heuristic to
extend to multi-class classification, i.e. One_vs_Rest method.
This method converts the multi-class classification task into
multiple binary classification tasks.

III. MODEL

In this paper, we aim at designing a multi-class classifier
using Classical to Quantum Transfer Learning approach. This
sort of architecture has been previously used for binary clas-
sifications mostly. We propose a model to classify a set of
images into two or more corresponding classes. For this work,
we have classified the handwritten digits( MNIST dataset has
been used) into 10 corresponding classes, though any dataset
can be used.

Our research paper is grounded in Transfer Learning archi-
tectures, serving as the foundational framework for our work.
Within this framework, we employ a hybrid classical-quantum
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Fig. 2: The Quantum Circuit designed

circuit in conjunction with a one-vs-rest heuristic for multi-
class classification. This combination of classical and quan-
tum components forms the core of our data processing and
classification methodology. The models we will further build
are hybrid structures. So, a blend of classical and quantum
portion exists as shown in Fig 1. We restrict the models to 4
qubits in this work. The quantum circuit takes in data from
a classical predecessor, processes them, and then gives some
output to the classical successor.

To elaborate, our approach involves processing input data
in the form of images through a classical-quantum network.
This network is specifically built upon a ResNetl8 layer
architecture, with the final layer being replaced by quantum
circuits. This choice in architecture is a critical aspect of
our theoretical framework, as it outlines how data is encoded
into quantum circuits and how results are obtained through
quantum measurements.

To test the efficacy of our approach, we have conducted
experiments using binary hybrid models for each pair of
digits, as well as an integrated multi-class classifier applied
to a dataset encompassing all 10 digits. This rigorous testing
methodology underscores the robustness of our framework.
We divide the work into two main sections, where in the first
section we check the behaviour of this architecture towards
classification of each pair of digits (i.e, binary classification)
and in the second section we test different architectures on
different simulators to achieve multi-class classification. Each
of the models we further discuss are executed using simulators,
with different hyperparameter settings. The images of MNIST
dataset serve as the input to each of our models, while the
network output is used to predict the output class using
softmax activation function. For all the models discussed
below, we mention the hyperparameters and simulators used,
so that it is reproducible for future work.

A. Binary Classification

In order to understand the performance of this architecture
with MNIST dataset, we first train our model with 2 classes
at a time. We design a model using a quantum circuit and
compare the output with the model used in [3]. The main
motivation behind comparing the two models for the same
classification task is to see how a change in the quantum
circuit affects the classification results.

1) Quantum Binary Classification Model (QBCM): We
build a model as shown in Fig 3 by replacing the “Quantum
Circuit” block of Fig 3 with the circuit shown in Fig 2.

Input Image
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Fig. 3: Schematic diagram of model for binary classification
for the pair of digits : 0 and 1. The binary classifier assigns
probabilities to the 2 classes
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In Fig 2, followed by the parallel Hadamard gates, the circuit
has a set of Rotation gates which encode the input data.
Primarily, this set of Rotation gates convert data from classical
domain to quantum domain for further quantum computations
to take place.
This encoding is followed by a variational circuit with ad-
justable parameters. The parameters in the circuit are the
angles with which the Rotation gates are associated. While
training this circuit, these parameters are updated at each
iteration.
Finally we take a series of measurements of the qubits. These
measurements are then used for further classical computations.
The measurement of the qubits at the end of the quantum
network is fed to a linear layer with mapping 4 —2 which
predicts the class.
The model shown in Fig 3 is for the two input classes 0 and
1. Similarly, models were built for each pair of input classes.
We train QBCM as well as the model used in [3] to classify
2 digits at a time. We take 2 classes, say 0 and 1, train the
models with 1000 images of Os and s, test them with 500
images of Os and 1s. Similarly, we repeat this for every pair
of digits for both the models.

The hyperparameters used for every model are:

o Optimizer : SGD

o Learning rate : 0.001

e Momentum : 0.9

o Number of epochs : 5
Both the models were simulated on Pennylane’s default.qubit
( [9] ) ; a simple state simulator.

B. Multi-class Classification

Next, we move toward multi-class classification. Here, the
transfer learning models built had used the quantum circuit of
a binary classifier.

1) Quantum Multi-Class Classification Model-1 (QMCM-
1) : Modifying only post-processing layer for multi-class
classification: As a first attempt , the most obvious approach
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Fig. 4: Schematic diagram of QMCM-1 . The post-processing
layer has been modified to assign probabilities to all 10 classes,
instead of 2.
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Fig. 5: Schematic diagram of the one-vs-rest model proposed

to extend the model shown in Fig 3 towards multi-class
classification is to modify the post-processing layer of the
network such that the model assigns probabilities to 10 classes
instead of 2. We modify the post-processing layer to map
4 — 10 (since there are 4 qubits in the quantum circuit used)
which is shown in Fig 4. The hyperparameters used were:

o Optimizer : SGD

o Learning rate : 0.001

e Momentum : 0.9

o Number of epochs : 5

We trained the model using 5000 images of all digits, and
tested using 100 images. The model was simulated on Penny-
lane’s default.qubit ( [9] ); a simple state simulator.

C. Quantum Multi-Class Classification Model-1I (QMCM-2)
: One_vs_Rest methodology

We present another approach here. We propose a one-vs-
rest method which is a common technique to extend binary
classifiers towards multi-class classifiers.

We first discuss the model architecture, followed by the
experimental set-up used for simulations.

1) Model Architecture: We build the model in two parts:

a) Sub-models: We train 10 hybrid sub-models, such
that each of them adapts to the classical-to-quantum transfer
learning approach, where in the “classical” portion we use
ResNet18 convolutional network with its fully connected
layer replaced by the “quantum” portion: a quantum binary
classifier. The ResNetl8 network we used is a model pre-
trained on ImageNet, from torchvision package.

Each of these sub-models are trained for individual digits, i.e,
Ist model is trained to detect whether a given input is 0 or
not 0, 2nd model is trained to detect a 1 or not 1 and so on.
In other words, the ith submodel produces two outputs: p;g
and p;; , where p;o is the probability of a given input image
to not be in class (i — 1) and p;; is the probability that it
belongs to class (i — 1) ; i € {1,2,...,10}

b) Integrating the sub-models: The output of the above
10 sub-models are further processed. Based on the 10 output
of the 10 sub-models, each class of digit gets assigned a
probability. The model finally predicts that class which has
the highest probability assigned to it. The output from each
of the sub-models are integrated using the Softmax activation
function, which predicts the class of the input image.
For a given input image,
according to ¢th submodel, the probability that it belongs to
class (i — 1) is given by p;1.
We normalize these scores to use Softmax activation func-
tion. Thus, we assign probabilities to each class (i — 1) as
P1,P2, -.-p1o Where :
pi= Z;%:;Pﬂ
Then, the predicted class = k£ — 1, such that,
pr = max p; where k € {1,2,...10}.

In other words, suppose the input image is that of the digit 5.
Then, corresponding to this input, all the sub-models output
some probability, i.e, 1st model outputs the probability by
which the input image is a 0, the 2nd model outputs the
probability by which the input image is a 1, and so on. Based
on these outputs from 10 sub-models, the one who assigns
highest probability is considered as the predicted class. In
this case, it is expected that the 6th model will assign highest
probability, since the input is that of digit 5. The schematic
representation of the model is shown in Fig 5.

2) Experimental Setup: To train ith sub-model, we have
used a subset of the MNIST dataset comprising of 300 images
of ¢ and 300 images of all digits. We tested each using 100
images of all digits.

The integrated model and the sub-models were simulated on
Pennylane’s default.qubit( [9]); a simple state simulator, as
well as qiskit.basicaer ( [10]); a simplified version of the Aer
device.

For the default.qubit simulator, SGD optimizer was used with
hyper-parameters as :

e learning rate=0.001

o momentum=0.9

e epochs=6

o batch Size=10

o loss Function : Cross Entropy Loss

For the qgiskit.basicaer simulator, SGD optimizer was used with
hyper-parameters as :

o learning rate=0.001
o momentum=0.9

e epochs=6

« batch Size=10



TABLE I: Test accuracy achieved when training on 2
classes at a time using model shown in [3]. The entry
in the ¢th row and jth column shows the accuracy on
training with the classes ¢ and j

TABLE II: Test accuracy achieved when training on 2
classes at a time using QBCM. The entry in the ith row
and jth column shows the accuracy on training with the
classes ¢ and j

“ 0 1 2 3 4 5 6 7 8 9 H 0 1 2 3 4 5 6 7 8 9
0 - 100 99.1 994 997 995 974 998 988 977 0 - 999 99.1 984 997 996 979 996 99.2 98
1 - 994 996 995 996 992 985 99.7 989 1 - 993 995 994 996 99.1 994 994 99.6
2 - 952 995 982 981 986 98.6 98.6 2 - 954  99.1 97.6 98 98.8 99 98.8
3 - 95 644 974 99 98.5 99.1 3 - 99.2 925 97 99.1  99.1 99.1
4 - 97.6 98.7 96.8 984 96.7 4 - 96.8 986 975 986 982
5 - 984 994 985 958 5 - 98.5 992 985 96.1
6 - 99.9 98 99.5 6 - 999 979 993
7 - 99.7  96.6 7 - 99.8 98
8 - 97.8 8 - 98.1
9 - 9 -
TABLE II: Accuracy achieved by the individual sub- TABLE IV: Accuracy achieved by the individual sub-
models of QMCM-2 on de fault.qubit models of QMCM-2 on gqiskit.basicaer
Sub-model 7 Sub-model 2
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
98 99 90 98 98 98 98 93 94 95 98 100 92 98 99 96 99 95 96 97
TABLE V: Accuracy achieved by the proposed model TABLE VI: Accuracy achieved by the proposed model
QMCM-2 on default.qubit QMCM-2 on qiskit.basicaer
Target Target
Prediction 0 1 2 3 4 5 6 7 8 9 Prediction 0 1 2 3 4 5 6 7 8 9
0 83 0 4 0 0 1 15 2 5 1 0 83 0 4 2 0 0 8 2 5 0
1 0 126 0 0 0 0 0 1 0 0 1 0 121 0 0 0 0 0 0 0 0
2 0 0 109 6 1 1 1 4 0 0 2 0 1 99 6 0 0 0 4 1 1
3 0 0 1 98 0 6 0 7 11 2 3 0 0 0 49 0 0 0 1 0 0
4 1 0 0 0 105 0 1 1 1 0 4 0 0 0 0 102 0 1 6 1 2
5 1 0 0 2 I 78 2 0 2 0 5 2 2 7 49 3 86 3 8 12 2
6 0 0 0 0 0 0 67 0 0 0 6 0 0 0 0 2 0 74 0 1 0
7 0 0 2 0 1 1 0 84 2 4 7 0 0 5 0 1 1 0 78 0 4
8 0 0 0 0 0 0 1 0 68 2 8 0 0 0 0 0 0 1 0 69 4
9 0 0 0 1 2 0 0 0 0 85 9 0 1 1 1 2 0 0 0 0 81
¢ loss Function : Cross Entropy Loss IV. RESULTS AND DISCUSSION
In this section, we present the results obtained

Once all the sub-models were trained, the weights of the
sub-models were frozen. These 10 sub-models were then
integrated using a classical final layer.

The complete model was then tested using 1000 images
consisting all 10 digits.

The learning curves for each submodel of QMCM-2 using
de fault.qubit simulator is shown in Fig 6a which depicts
the performance of the submodels as they train over epochs
for both train and test dataset. Fig 6b shows the performance
of the submodels when they were made fully classical
(using ResNetl8 only). In simpler words, keeping the
hyperparameters, training and testing dataset same, if we
replace the hybrid architecture with ResNetl8, we get the
learning curves as shown in Fig 6b. But the plots of Fig
6b shows that 6 epochs is not enough to train the classical
model. We train them for 2 more epochs. Fig 7 shows the
curves when the fully classical submodels had been trained
and tested for 8 epochs.

corresponding to each architecture and models discussed in
the previous section. We present them in tabular form, for the
ease of comparison between several architectures.

The binary classification results obtained corresponding to the
model shown in [3] and QBCM are shown in TABLE I and
TABLE II respectively. The results shown in these two tables
clearly indicate that the network performs quite well for binary
classification tasks. The (i,j)th entry shows the accuracy
in distinguishing classes ¢ and j. Since distinguishing i, j
and 7,7 are same, so the tables are strictly upper triangular.
As also seen in [3], the architecture as QBCM performs
satisfactorily when dealing with two classes.

Though the results of TABLE I and TABLE II are similar, a
great improvement is achieved when training with classes 3
and 5. An accuracy of 64.4% was achieved using quantum
circuit of [3], while it improved to 92.5% when the quantum
circuit of Fig 2 was used.

QMCM-1 did not perform well enough. It has been shown in
[5] that modifying the post processing layer to 4 — 3 gives
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Fig. 6: (a) shows the Training and Test accuracies obtained for each submodel corresponding to QMCM-2 using de fault.qubit
simulator. (b) shows the Training and Test accuracies obtained for fully classical models (using ResNetl8) similar to each
submodel of (a). For instance, the first plot of (a) shows the accuracies when the Ist hybrid submodel was trained to detect
a 0 or not 0. Similar to that, the first plot of (b) shows the accuracies when a fully classical ResNetl18 model was trained to

detect a 0 or not 0.

good results, but in our case, changes made only to the post
processing layer could not yield satisfactory results. The best
accuracy obtained was 43%.

The results obtained corresponding to QMCM-2 are shown
in TABLE III, IV, V and VI. TABLE III and IV show
the accuracies obtained by the individual sub-models
on default.qubit simulator and qiskit.basicaer simulator
respectively. The entries are the accuracies obtained by the
ith sub-model on (i — 1) class.

On integrating the sub-models together, TABLE V and VI

show the accuracies of the complete model on default.qubit
simulator and qiskit.basicaer simulator respectively. The entry
in mth row and nth column shows the number of times n
was predicted to be m. So, the diagonal entries are correct
predictions, while off-diagonal entries are mis-predictions.
Since the total number of test images were 1000, so the
summation of all entries of the tables equal to 1000. Out of
these 1000 test images, number of correct predictions is given
by the summation of the diagonal elements of the table.

Comparing the accuracies obtained from both the simulators, it
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6) for same submodels as shown in Fig 6b

is clear that though the diagonals for both cases are dominant,
(the correct predictions represent the diagonal), default.qubit
achieves an accuracy of 90.4% while qiskit.basicaer achieves
84.2% accuracy in this classification task. It is also to be
noted, that we could achieve this accuracy with as little as 6
epochs.

In this architecture, though the number of models to be trained
are high, but the results are quite satisfactory as compared
to the classical architectures. Except a few off-diagonal
mispredictions, most of the predictions are correct. Also, the
quantum architecture requires lesser number of epochs to
train than the classical counterpart. Thus, we achieve better
accuracy with less data and less training time.
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