
1

Computer Vision and Image Understanding
journal homepage: www.elsevier.com

Feature Independent Filter Pruning by Successive Layers Analysis

Milton Mondala,1,∗∗, Bishshoy Dasa,1, Brejesh Lalla, Pushpendra Singhb, Sumantra Dutta Roya, Shiv Dutt Joshia

aDepartment of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India
bDepartment of Electronics and Communication Engineering, National Institute of Technology Hamirpur, Hamirpur (HP) - 177005, India

ABSTRACT

Convolutional neural networks (CNNs) have become deeper and wider over time. However due to
low computational power, mobile devices or embedded systems cannot use very deep models. Filter
pruning solves this by eliminating redundant filters. Pruning can be performed in a feature depen-
dent or independent manner. Feature dependent methods require extensive time to determine the filter
importance as these methods require generation and processing of feature maps for each example. Ad-
ditionally, in iterative pruning, filter importance is computed several times based on the current state.
This increases algorithm execution time further. However, existing feature independent methods are
fast, but they perform poor as they compute importance using only current layer filter weights. How-
ever, our analysis suggests that both the current and succeeding layer filters are crucial to determine
filter importance. We propose ‘Filter Pruning by Successive Layers analysis’ (FPSL), a novel feature
independent algorithm, that considers the effect of pruning a filter on the generation of feature maps
for the first time. Moreover, FPSL does not require layer-wise retraining, rigorous hyperparameter
search for fine-tuning, or human intervention to set the pruning percentage per layer. These make
FPSL extremely fast, efficient, and adaptive. Thus it follows iterative pruning and retraining. FPSL
outperforms the state-of-the-art (SOTA) methods on extensive experiments with different datasets (CI-
FAR, ImageNet) and architectures (VGG, ResNet, MobileNet). It decreases the computational burden
of VGG16 by half but improves CIFAR10 and CIFAR100 accuracy. Even for ImageNet, FPSL re-
duces 42.7% floating point operations (FLOPs) while maintaining top-1 accuracy for ResNet50.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Convolutional neural networks (CNNs) have been extremely
successful in solving diverse computer vision tasks, which in-
clude image classification [45], object detection [51], image
captioning [25], etc. The advancement of computational and
storage resources over the years has made this achievable be-
cause we need deeper and larger models for better performance.
Workstations and GPU servers are able to use CNNs as these
devices are capable of storing millions of parameters and per-

∗∗Corresponding Author
e-mail: milton.mondal@ee.iitd.ac.in (Milton Mondal),

bishshoy.das@ee.iitd.ac.in (Bishshoy Das),
brejesh@ee.iitd.ac.in (Brejesh Lall), spushp@nith.ac.in
(Pushpendra Singh), sumantra@ee.iitd.ac.in (Sumantra Dutta Roy),
sdjoshi@ee.iitd.ac.in (Shiv Dutt Joshi)

1Equal Contribution

forming billions of floating point operations (FLOPs). For in-
stance, the ResNet50 model requires 25.56 million parameters
and approximately 4 billion FLOPs to process a single image
of the ImageNet dataset. However the high computational cost
of using CNN restricts its deployment in mobile devices or em-
bedded systems due to resource constraints. To deal with this,
researchers have proposed several model compression methods
and efficient training mechanisms which can produce a compact
model without degrading the performance significantly. These
solutions include (a) parameter quantization [49, 32], (b) tensor
decomposition [6, 21], (c) knowledge distillation [14, 1], (d)
compact network synthesis [2, 38], (e) pruning network param-
eters [35, 55], etc. Out of all these solutions, pruning network
parameters reduces the computational cost of deep neural net-
works (DNNs) by first identifying and then deleting redundant
parameters in such a manner that the learning effectiveness is
maintained or even increased over the unpruned base model.
Unlike network synthesis methods, pruning offers the flexibil-

2

Fig. 1. Top-1 accuracy vs FLOPs for different pruning methods for
ResNet50 while using ImageNet dataset. FPSL provides the best test ac-
curacy compared to state of the art (SOTA) methods for similar target
FLOPs.

ity to the user to choose a standard base model (like VGG [45],
ResNet [7], MobileNet [42], etc.), and thereafter it automati-
cally generates a compact model from the base model by trim-
ming the redundant parameters.

Researchers have proposed mainly three kinds of pruning
methods, (i) weight pruning, (ii) filter pruning and (iii) inter-
mediate level pruning. Weight pruning methods delete weights
of low importance from a model. So even if a few weights of
a convolutional kernel are found to be redundant by the weight
pruning method, then it prunes those weights. Therefore, we
achieve a sparse model using weight pruning, but the model
will have an irregular structure. So the obtained pruned model
would fail to use Basic Linear Algebra Subprograms (BLAS) li-
braries directly. In contrast, a filter pruning method produces a
compact model with no structural irregularity as it eliminates a
filter entirely. Thus filter pruning is preferred over weight prun-
ing as we do not require any additional specialized hardware
or software to deal with structural issues. In intermediate level
pruning, a group of filter channels (block sparsity) or a group
of filter weights (N:M sparsity) within a filter channel are re-
moved. However, the tracking and updating process of group of
weights during the block level pruning makes the entire process
complex, whereas specialized sparse tensor core based GPU is
required to obtain N:M sparsity. So our focus in this paper is
to design a less complex yet effective ‘filter pruning’ algorithm
that determines and removes the redundant filters efficiently.

A filter pruning method can either be (i) Feature Depen-
dent [44, 20, 47, 56, 28, 37, 36], or (ii) Feature Independent
[12, 27, 26, 46, 9, 11, 10]. The methods that use feature map in-
formation to find the filter importance are referred to as ‘Feature
Dependent’ methods, whereas the methods that use only filter
attributes and no feature map properties to determine the redun-
dant filters are referred to as ‘Feature Independent’ methods. In

both cases low importance filters are pruned and then retrain-
ing is followed to recover the performance. Feature dependent
methods eliminate redundant filters based on the feature map
properties like frequency representation [56], rank [28], entropy
[36], scale and shift parameters of the batch norm [31, 20] etc.
Removal of a filter when the corresponding feature map chan-
nel has low class-wise mask score for each class [57], prune
to minimize feature map reconstruction error [37]. These are
few examples of existing feature dependent filter pruning meth-
ods. Most of the feature dependent methods [56, 28, 37, 36] use
subsampled training data to estimate the feature map statistics
in order to avoid the excessive time and computational burden
of generating and processing feature maps for all training exam-
ples at any instant. The cost of computing feature map statistics
increases proportionally with the spatial size of the input im-
age and also with the number layers and filters used in a CNN.
Subsampled approach works fine when we have taken a signif-
icant number of training examples from each class to compute
the feature map statistics, like dealing with the CIFAR10 [22]
dataset which contains 10 classes. However the performance
of these methods severely degrades while dealing with a large
and diverse datasets like ImageNet [41] which contains 1000
classes, as these methods can allow only 10 images per class to
estimate the feature map statistics. Otherwise the time required
to process those feature maps to estimate properties like rank or
class-wise activation would be very high as the spatial size of
the ImageNet data is also large compared to CIFAR10. So fea-
ture dependent methods suffer from poor estimation of feature
map statistics for large diverse datasets like ImageNet, as very
few samples per class is used for estimation which is overall
less than 1% of the total training data [56, 28, 37, 36]. Also
additional memory and computations is required for feature
dependent pruning algorithms in which feature map sizes in-
crease by the number of classes [57] or which computes fourier
transforms of large feature map matrices [56]. Whereas, fea-
ture independent methods do not store or process an enormous
number of feature maps to compute filter importance scores as
these methods are based only on the model’s weights which
remains fixed for all training examples. So the complexity of
these methods [27, 46, 9, 11, 10] are less compared to feature
dependent methods but the performance of these methods are
often poor compared to feature dependent methods. This hap-
pens due to improper analysis of a filter’s contribution towards
generating feature maps. Existing feature independent meth-
ods [12, 9, 11, 10, 23] use only present layer filter properties
to determine the current layer filter importances which degrade
the performance of these methods as these methods do not con-
sider the impact of pruning a filter on feature map. We find that
removing a filter from a layer not only reduces the number of
filters in that layer by one but it also enforces reduction in the
number of input channels of all filters in the succeeding layer by
one. After pruning, the number of features in the current layer
reduces by one but the number of features remain same in the
succeeding layer as shown in Fig. 2. The size of the filters and
features of all other layers remain unaffected. Our analysis indi-
cates that both the current and the immediate next layer’s filter
information are required to determine the filter that needs to be

3

Fig. 2. Pruning a single filter from a CNN. (a) unpruned model (b) pruned
model. Eliminating the first filter of lth layer, not only removes the first
feature map of lth layer but also reduces channel dimension of all the filters
in (l + 1)th layer by one. However the number of features remain same in
(l + 1)th layer even after pruning.

prune from current layer. The pruned model recover its perfor-
mance during the retraining phase as we prevent the model to
deviate significantly from its previously converged optima.

The complexity of the existing feature independent or de-
pendent algorithms increase due to two additional reasons - (i)
using pruning rate per layer as a hyperparameter, (ii) pruning
and retraining on a per layer basis. Methods [54, 23, 36] have
found out that the different convolutional layers have different
sensitivity towards pruning.. These methods manually set the
pruning rate for each layer after observing the pruning sensitiv-
ity of filters in each layer. This requires a lot of manual inter-
vention and the process becomes extremely tedious for deeper
models like, ResNet50, ResNet110, etc. Such extensive hyper-
parameter tuning is required because filter importance metrics
computed by these methods [23, 9, 11, 10] are not comparable
across the layers. The second problem is layer-wise retraining
after pruning [55, 37, 16]. This makes the retraining process of
the entire network time consuming and also complicated due to
the the additional overhead of hyperparameter search for each
layer. So other methods such as [12, 9, 11, 10] prune filters
from each layer at a uniform rate in order to avoid tuning of ad-
ditional hyperparameters but this results in suboptimal perfor-
mance. Few recent methods [12, 5] have found out that pruning
a small fraction of filters from the entire network in multiple
epochs is better than the pruning all filters at first and then ex-
pecting that the fine tuning of the pruned model with large num-
ber of epochs will recover the accuracy. For feature dependent
methods like [56, 28, 37, 36], iterative pruning and retraining
becomes extremely challenging and time taking as the filter im-
portance has to be computed several times based on the current
state of the model.

To address the aforementioned problems, we propose a novel
feature independent filter pruning method which prunes filters
adaptively from different convolutional layers. Pruning a fil-
ter from a layer leads to elimination of one feature map of that
layer and the channel depth of all the filters in the immediate
layer reduces by one. However, the number of feature maps in
the immediate next layer remains the same even after pruning.
So while pruning a filter from a layer, our objective is that even
after pruning, the feature maps in the immediate next layer re-
main close to unpruned state feature maps. During retraining
of the pruned model, the likelihood of regaining performance
improves with lesser change in the feature map due to pruning.
So, our method calculates the ℓ1 norm of a filter of the lth layer
and also computes the ℓ1 norm of the corresponding channel
of all the filters present in the immediate next layer to compute
the importance of filters. We find that they both contribute to
producing feature maps of (l + 1)th layer. We aim to design
a filter pruning method such that the feature maps of (l + 1)th

layer is minimally affected while pruning a filter from lth layer.
As we use only the filter properties of two successive layers to
determine a filter’s importance, we name our method as ‘Filter
Pruning by Successive Layers analysis’ (FPSL). The attractive
element of FPSL is that it is feature independent, so we do not
have to pass all the input images to the network to determine
the filter importance at any time. We follow the iterative prun-
ing and retraining procedure until the pruned model matches a
target computational budget (FLOPs). The following are the
major contributions of our method:

1. We propose a novel filter pruning method ‘FPSL’ based
on our analysis which suggests that both current and the
immediate next layer are crucial for determining the im-
portance of any filter of the current layer.

2. FPSL computes filter importance extremely fast as it re-
quires only the filter weights of two successive layers. Ad-
ditionally, it does not require layer-wise retraining, or hu-
man intervention to set the pruning percentage on a per-
layer basis. It adaptively prunes filters from different con-
volutional layers.

3. Extensive experiments with various datasets (CIFAR, Im-
ageNet) and architectures (VGG, ResNet, MobileNet)
demonstrate that FPSL provides better classification per-
formance compared to existing filter pruning methods for
similar FLOPs reduction.

Empirical results also demonstrate the effectiveness of FPSL
across various network architectures. For VGG16, FPSL pro-
vides 54% FLOPs reduction without any drop in test accuracy
both for CIFAR10 and CIFAR100 classification tasks. Simi-
larly, FPSL can maintain the same performance as the unpruned
network and can still reduce 50% FLOPs from both ResNet56
and ResNet110 for CIFAR10 classification. Even for the more
challenging ResNet50 ImageNet configuration, FPSL reduces
43% FLOPs without any drop in the test accuracy.

2. Related Works

Network parameters can be pruned in three ways - (i) weight
pruning, (ii) intermediate level pruning and (iii) filter pruning.

4

2.1. Weight Pruning:

Weight pruning allows pruning of weights both from spa-
tial and channel dimensions of filters. For example, Liu et al.
[35] introduce a multi-dimension pruning technique that uses
stochastic gradient estimates to simultaneously reduce the num-
ber of channels, spatial dimension, and depth of the network
whereas Zeng et al. [55] eliminate both interspatial as well
as interkernel redundancy after ranking weights using princi-
pal component analysis (PCA). Hu et al. [15] prune low valued
activation channels after measuring the average proportion of
zero activations across all examples and the spatial size. Other
weight pruning pruning methods are based on group sparsity for
structure regularization [50], 2D Discretre Cosine Transform
(DCT) on network weights to minimize the spatial redundancy
in a filter [34], second order derivative of the layer-wise error to
prune parameters from each layer [3].

Weight pruning removes unimportant weights from the net-
work but it leads to unstructured sparsity. So weight pruning
does not provide realistic acceleration without using additional
software or hardware. However filter pruning removes filters
from the network and it improves inference speed as the pruned
model does not have structural irregularity issues and it can use
BLAS libraries directly.

2.2. Intermediate Level Pruning:

Recently, few pruning methods are proposed which perform
intermediate level pruning [60, 58, 59, 19, 29]. These prun-
ing methods either remove a block or a group of weights from
the network. In block-sparsity based methods [19, 29], block
removal means elimination of all the weights within a specific
filter channel. For instance, Yu Ji et al.[19] prune a particular
channel of consecutive filters and follows 1*N pattern of prun-
ing, while M. Lin et al. [29] reorder the filter channels and
then removes the smaller magnitude filter channels for struc-
tured pruning. Whereas N:M sparsity based methods impose a
structured sparsity pattern to prune a group of weights like N
number of weights from a group of M weights within a filter
channel.

Recent methods solved few dominant complexities in the im-
plementation of N:M sparsity for example reducing the train-
ing cost by approximating the gradients of removed weights
using straight through estimator (STE) [60] or by learning the
best weight combination [58], by overcoming the dense gra-
dient computation in the backward path by disentangaling the
forward and backward paths [59]. Generally N:M fine grained
structured sparsity provides both computational efficiency and
lossless performance. However, N:M sparsity based accelera-
tion is possible only when we use NVIDIA A100 GPU as it
supports sparse Matrix Multiply Accumulate (MMA) instruc-
tions [29]. All other available GPUs except NVIDIA A100 do
not have the sparse tensor cores. So we are not able to use N:M
sparsity based approaches on any other platforms.

2.3. Filter Pruning:

Existing filter pruning methods can be divided into mainly
four groups based on the type of the pruning algorithm. These
are: filter pruning using (i) Filter attributes, (ii) Feature map

characteristics, (iii) Optimization based methods, (iv) Addi-
tional module or network.

2.3.1. Filter Attributes
Pruning methods that rely on only filter attributes to deter-

mine filter importance are also known as feature independent
methods [27, 46, 11, 10, 23]. Existing methods such as PFEC
[23] prunes filters which have a low ℓ1 filter norm as filters with
a low norm generate low activations in the respective CNN fea-
ture map. Similarly, He et al. [10] propose a method that allows
a larger optimization space to find the best pruned model by per-
forming soft pruning based on the ℓ2 norm of the filters of the
current layer. In FPGM, He et al.[11] remove filters which are
close to the geometric median of all the filters present in a given
layer, while Singh et al. [46] delete one of two strongly corre-
lated filters. Furthermore, in Epruner [27], the optimal pruned
architecture is found by a message passing algorithm and using
affinity propagation algorithm on weight matrices.

2.3.2. Feature Map Characteristics
In contrast to filter attribute based approaches, pruning meth-

ods which use feature map characteristics are termed as feature-
dependent methods [20, 28, 37, 53, 54]. For example, Ye et al.
[53] sparsify the batch normalization layer’s scaling value, so
more channels become constant for all training samples. These
constant channels are later trimmed and biases are adjusted.
Luo et al. [37] introduce a data-driven approach for pruning
filters from a layer such that the feature map reconstruction er-
ror in the next layer is minimized as a result of the pruning.
Other methods include dependencies on feature rank estimtes
[28], backpropagating feature selection based relevance scores
[54], and utilization of activation map distributions [20].

2.3.3. Optimization based Methods
Existing methods [44, 47, 18, 24, 13] which modify the loss

function to achieve sparsity but with minimal or no degrada-
tion in the performance fall in this category. For instance, Y.
Idelbayev. et al. [18] impose rank constraint on each layer to
perform sparse model selection. Likewise Li et al.[24] modify
the loss function and adopted group sparsity regularization. He
et al.[13] further explore alternatively optimizing channel se-
lection and adjusting the retained weights to reduce the feature
map reconstruction error locally. In [61], a knee guided evolu-
tionary algorithm is applied to the contradictory objectives of
minimizing parameters but maximizing performance. Tang et
al. [47] introduce a regularization method that uses manifold
information of training examples for filter removal.

2.3.4. Using Additional Modules or Networks
Another frequent strategy is to use an extra network or mod-

ule [4, 48, 30, 33, 16] to accomplish pruning. Adding an extra
network or module for pruning relates to multiple knowledge
representation [52]. The original network contains the over-
all knowledge and functionality, while the specialized pruning
network or module contains pruning-specific knowledge. Com-
bining these representations helps in optimizing the pruning
process. Liu et al.[33] introduce an additional meta network

5

to eliminate the least important filters of a base model by us-
ing stochastic structure sampling and evolutionary algorithm.
Lin et al.[30] apply generative adversarial learning where the
pruned version of the base model serves as a generator and an
additional fully connected network serves as a discriminator.
Some recent methods in this area include adding an auxiliary
attention layer [48], introducing an episodic memory module
and using resampling techniques [4] to extract subnetworks.

FPSL falls into the first category as it is a filter attributes
based filter pruning method. It stands out as a distinctive fea-
ture independent method that specifically accounts for the con-
sequences of pruning a filter from a layer on the generation
of feature maps of the immediate next layer. This sets FPSL
apart from other feature independent methods, as it recognizes
the interconnectedness between filters across consecutive layers
while taking pruning decisions. Unlike existing filter attributes
based methods that consider only present layer filter properties
[12, 9, 11, 10, 23], FPSL takes into account both the current
layer and the immediate next layer’s filter information to de-
termine the filter that needs to be pruned. Our method also
eliminates the need for layer-wise retraining after pruning fil-
ters from each layer, thereby avoiding the additional overhead
of hyperparameter search for each layer. This advantage makes
FPSL stand out from existing methods [55, 37, 16]. Further-
more, FPSL provides the benefit of generating globally compa-
rable importance scores for filters across all layers. This fea-
ture allows FPSL to automatically and adaptively determine the
pruning fraction specific to each layer without manual interven-
tion, distinguishing it from existing approaches [23, 9, 11, 10].
All these advantages make FPSL a convenient and efficient
method for producing a compact CNN.

3. Proposed Method

In this section, we first demonstrate the rationale behind us-
ing both the current layer’s and the succeeding layer’s filter in-
formation to prune filters from the current layer and thereafter
we describe the proposed method. Firstly we find out what can
be a proper feature independent pruning metric for a fully con-
nected feed forward neural network (FCFN).

3.1. Neuron elimination in FCFN

In FCFN, the base model generates the neurons (z[l]) of lth

layer by the following equation,

z[l] = Ua[l−1] (1)

z[l] =

U11 U12 . . . U1n

U21 U22 . . . U2n
...

...
. . .

...
Um1 Um2 . . . Umn

 a[l−1] (2)

where, z[l] ∈ Rm, a[l−1] ∈ Rn, U ∈ Rm×n

Similarly, (l + 1)th layer neurons (z[l+1]) are generated by the
following equation,

z[l+1] = Va[l] (3)

z[l+1] =

V11 V12 . . . V1m

V21 V22 . . . V2m
...

...
. . .

...
Vp1 Vp2 . . . Vpm

 a[l] (4)

where, z[l+1] ∈ Rp, a[l] ∈ Rm, V ∈ Rp×m

In CNN, pruning one filter from the lth layer leads to the elim-
ination of one feature map from the lth layer. Similarly, deleting
a row of U(W[l]) matrix in FCFN is analogous to the process of
pruning a filter in CNN. Deleting a row of U will also eliminate
one neuron (feature in CNN) from lth layer as shown in Fig. 3.
The feature maps of the pruned model after elimination of one
neuron are described by,

ẑ[l] = Ûa[l−1] (5)

where, Û ∈ R(m−1)×n and ẑ[l] ∈ Rm−1

Elimination of a neuron enforces that one column of the V
matrix needs to be deleted as the dimension of a[l] gets re-
duced by one due to pruning. So the size of the weight ma-
trix after the elimination of one neuron from lth layer would be,
V̂ ∈ Rp×(m−1). However the size of both ẑ[l+1] and z[l+1] would
be same, i.e. ẑ[l+1] ∈ Rp.

3.2. Analysis without non-linearity and batch normalization
for FCFN

3.2.1. Forward propagation
To find out a proper feature independent pruning criteria

based on filter norm, we first analyze the FCFN without batch
normalization and non-linearity activation for the sake of sim-
plicity. Here, our objective is to find a pruning metric which
can ensure that the feature maps after pruning is close to the
unpruned model’s feature maps.

If we assume that no non-linearity activation functions and
batch norm functions are present in the entire FCFN, then,

z[l+1] = Vz[l] = VUa[l−1] (6)

as a[l] = z[l] = Ua[l−1] if no non-linearity is present. Here,
z[l+1] ∈ Rp, a[l−1] ∈ Rn

z[l+1] =

 V:,1 V:,2 . . . V:,m

p×m

U1,:
U2,:
...

Um,:

m×n

a[l−1]

(7)
Here, we express the matrix multiplication VU as the sum-

mation of matrices obtained by multiplying columns of V by
the corresponding rows of U.

z[l+1] = (
m∑

j=1

V:, jU j,:)a[l−1] (8)

Fig. 3 shows how the elimination of the first neuron from the lth

layer leads to the removal of all the incoming connections from
(l − 1)th layer to that neuron (i.e., U1,:) and also removal of all
the outgoing connections from that neuron to (l+1)th layer (i.e.,
V:,1). Similarly, if we want to eliminate jth0 neuron from the lth

6

Fig. 3. Neuron elimination from lth layer of a Fully Connected Feedforward
Neural network (FCFN). It shows the structural change in (l+1)th layer due
to elimination of one neuron from lth layer.

layer, both jth0 column of V (V:, j0) and jth0 row of U (U j0,:) will
be pruned and the feature maps at (l + 1)th layer after pruning
jth0 neuron will be,

ẑ[l+1] = (
m∑

j=1
j, j0

V:, jU j,:)a[l−1] (9)

so
z[l+1] − ẑ[l+1] = (V:, j0 U j0,:)a

[l−1] (10)

where, (V:, j0 U j0,:) ∈ Rp×n, V:, j0 ∈ Rp×1, U j0,: ∈ R1×n, a[l−1] ∈

Rn×1

Here, our objective is to find out that jth0 index for which
elements of (V:, j0 U j0,:) are small. So, we observe the ℓ1 norm
of both V:, j0 and U j0,: and compute the importance of jth0 index
(Imp(j0)) using the following equation,

Imp(j0) = ∥V:, j0∥1∥U j0,:∥1 (11)

One can eliminate a neuron based on the properties of ei-
ther (a) U or (b) V or (c) UV. jth0 neuron can be pruned
when, ∥U j0,:∥1 < ∥U j,:∥1 ∀ j ∈ [1, 2, ..m]; j , j0. Exist-
ing methods [9, 10, 23] use this approach which is based on
only U j0,: to eliminate jth0 neuron from lth layer. However if
∥V:, j0∥1 >> ∥V:, j∥1 then the contribution by jth0 neuron to pro-
duce z[l+1] will be greater than the jth neuron, even though
∥U j0,:∥1 < ∥U j,:∥1. So our method considers both U j0,: and V:, j0
to determine the jth0 neuron that needs to be pruned. We find
that if, ∥V:, j0∥1∥U j0,:∥1 ≈ 0 =⇒ V:, j0 U j0,: ≈ 0 =⇒ z[l+1] ≈ ẑ[l+1]

So in a practical scenario, our proposed method eliminates
jth0 neuron if
∥V:, j0∥1∥U j0,:∥1 < ∥V:, j∥1∥U j,:∥1 ∀ j ∈ [1, 2, ..m]; j , j0

3.2.2. Backward propagation
Here we observe the effects of pruning on the gradient of the

model weights while performing backpropagation to update the
weights. We observe that,

∇z[l]L = V⊺∇z[l+1]L (12)

∇z[l−1]L = U⊺∇z[l]L = U⊺V⊺∇z[l+1]L = (VU)⊺∇z[l+1]L (13)

As we know that if we prune jth0 neuron from lth layer using our
method, then after pruning,

∇ ẑ[l−1]L = (V̂Û)⊺∇z[l+1]L ≈ (VU)⊺∇z[l+1]L (14)

as VU = (
∑m

j=1 V:, jU j,:) ≈ (
∑m

j=1
j, j0

V:, jU j,:) = V̂Û

From eq. 13, we observe that the gradient update for all the
outputs (similarly, weights) before lth layer will not be ham-
pered significantly even after pruning a neuron from lth layer
which satisfies ∥V:, j0∥1∥U j0,:∥1 ≈ 0. In practical scenario, if
∥V:, j0∥1∥U j0,:∥1 is smaller than ∥V:, j∥1∥U j,:∥1 ∀ j ∈ [1, 2, ..m];
j , j0, then the gradient update for the outputs and weights
before lth layer will change by smaller amount than pruning a
neuron for which importance score is large. So the pruned net-
work can recover the performance with little retraining as it has
not deviated from its optima significantly.

3.3. FCFN with non-linearity and batch norm

As the proposed method provides importance score corre-
sponding to a neuron (feature map). So, even when batch norm
and non-linearity is present in the network, we can still compute
directly ∥U j0,:∥1 and ∥V:, j0∥1 from FCFN.

a[l−1] U(W[l])
−−−−−→ z[l] BN

−−→ y[l] ReLU
−−−−→ a[l] V(W[l+1])

−−−−−−−→ z[l+1]

If, ∥U j0,:∥1 ≈ 0 =⇒ z[l]
j0
≈ 0(∀ training examples)

z[l]
j0
≈ 0 =⇒ y[l]

j0
≈ 0 =⇒ a[l]

j0
≈ 0(∀ training examples)

Now along with ∥U j0,:∥1 ≈ 0 if, ∥V:, j0∥1 ≈ 0, then both a[l]
j0
≈

0 and V:, j0 ≈ 0.
Proposed method performs pruning of jth0 neuron when both

a[l]
j0
≈ 0 and V:, j0 ≈ 0 as it uses both ∥U j0,:∥1 and ∥V:, j0∥1. So,

even after pruning jth0 neuron from lth layer, the output vector
(̂z[l+1]) remains approximately same as the output vector (z[l+1])
produced by the the base model for (l + 1)th layer. We find that
the proposed importance score is easy to compute and no mod-
ification is required even when non-linearity and batch norm
layer is present in the network.

3.4. Feature map elimination in CNN using FPSL

We extend our analysis to determine the filter pruning crite-
rion for CNN. Here, the lth layer activation maps (a[l]) is con-
volved with the kth filter of (l + 1)th layer and it produces kth

feature map (z[l+1]
k) of (l + 1)th layer,

z[l+1]
k = f[l+1]

k ∗ a[l] =

m∑
j=1

f[l+1]
k j
∗ a[l]

j (15)

where, z[l+1]
k ∈ Rw×h, f[l+1]

k ∈ Rm×s×s, a[l] ∈ Rm×w×h, f[l+1]
k j
∈

Rs×s, a[l]
j ∈ R

w×h, z[l+1] ∈ Rp×w×h

In this paper, ∗ symbol is used to represent the convolution
operator. Here, w, h indicate the width and height of a feature
map and s × s indicates the kernel size of a filter and each of
them can vary over the layers. However for notational simplic-
ity, we do not use wl, hl and sl for lth layer and wl+1, hl+1 and
sl+1 for (l + 1)th layer. FPSL does not modify the spatial size
of features or filters. So the spatial size remains same, only

7

f2[l]

f3[l] =
ReLU

m

a[l-1] z[l] a[l]z[l] z[l+1]

f1[l]

fm[l]

f1[l+1]

f2[l+1]

f3[l+1]

f4[l+1]

f5[l+1]

fp[l+1]

n
m

=

z[l+1]

p

z1
[l]

z2
[l]

z3
[l]

zm
[l]

z1
[l+1]

z2
[l+1]

z3
[l+1]

z4
[l+1]

z5
[l+1]

zp
[l+1]

Fig. 4. Pipeline of FPSL. (i) Low ∥f[l]
1,:∥1 (green, i.e. first filter of lth layer) indicates low ∥z[l]

1 ∥1, (ii) If ∥f[l+1]
:,1 ∥1 (green, i.e. first channel of all the filters of

(l + 1)th layer) is also low, then f[l]
1,: should be pruned as both the first feature z[l]

1 and f[l+1]
:,1 has not contributed significantly to produce feature maps of

(l + 1)th layer. However if one of the ℓ1 norm is large then the contribution of the first filter of lth layer need not be necessarily low as both the lth (present)
layer and (l + 1)th (next) layer filter contribute to generate z[l+1]. So FPSL takes both ∥f[l]

j,:∥1 and ∥f[l+1]
:, j ∥1 to determine the jth filter that needs to be pruned

from lth layer. In filter pruning, eliminating f[l]
1,: imposes elimination of f[l+1]

:,1 to match the structural size after pruning. Here, f[l]
j = f[l]

j,: ∈ R1×n×s×s and
f[l+1]
:, j ∈ Rp×1×s×s.

the number of input and output channels gets modified due to
pruning.

Each channel of a filter is convolved with the corresponding
channel of the feature map and the output for each channel is
summed to produce a feature map as shown in eq. 15. If we
prune jth0 filter from the lth layer, then jth0 feature map of lth

layer will also be eliminated. However the size of the feature
map for (l + 1)th layer will not be affected. So after pruning jth0
filter,

ẑ[l+1]
k =

m∑
j=1
j, j0

f[l+1]
k j
∗ a[l]

j (16)

z[l+1]
k − ẑ[l+1]

k = f[l+1]
k j0
∗ a[l]

j0
(17)

Here, kth feature map of (l + 1)th layer is denoted by z[l+1]
k

for base model and by ẑ[l+1]
k for pruned model when jth0 filter is

pruned from lth layer. Our objective is to prune jth0 filter from lth

layer in such a manner that, z[l+1]
k − ẑ[l+1]

k ≈ 0 ∀k ∈ [1, 2, .., p].
This would only be possible when f[l+1]

k j0
≈ 0 and a[l]

j0
≈ 0 (any

tensor T ≈ 0 =⇒ all coefficients of T ≈ 0). Here, we are
interested in feature independent filter pruning method, so we
use ∥f[l]

j0
∥1 instead of a[l]

j0
to decide the index of the filter which

needs to pruned.
z[l]

j0
= f[l]

j0
∗ a[l−1] (18)

As we know that ∥f[l]
j0
∥

(#)
1 ≈ 0 =⇒ z[l]

j0
≈ 0 =⇒ a[l]

j0
≈ 0(∀

training examples) where, f[l]
j0
∈ Rn×s×s, z[l]

j0
∈ Rw×h

So in practical scenario, our proposed method prunes jth0 fil-
ter from lth layer, when ∥f[l]

j0,:
∥1∥f[l+1]

:, j0
∥1 < ∥f[l]

j,:∥1∥f
[l+1]
:, j ∥1∀ j ∈

[1, 2, ..,m] where, f[l]
j0,:
∈ R1×n×s×s, f[l+1]

:, j0
∈ Rp×1×s×s. If jth0 filter

is having small norm and also the corresponding input chan-
nel of every filter in the next layer is having small norm then
the contribution of the jth0 filter in lth layer to produce z[l+1] will
be lower than all the other filters present in the lth layer. So
FPSL first computes the multiplication of ∥f[l]

j0,:
∥1 and ∥f[l+1]

:, j0
∥1

to compute the importance score of jth0 filter of lth layer. We
also present a block diagram of the FPSL pipeline in Fig. 4 to
provide a visual representation for better understanding.

(#) In this paper, ℓ1 norm of any matrix (tensor) is computed
by first flattening (vectorizing) the matrix into 1D vector and
thereafter taking the ℓ1 norm of that vector. For example, if a
tensor T ∈ Ra×b×c, then ∥T∥1 =

∑
i
∑

j
∑

k |Ti jk |. We have used
this notation only for convenience. It is not an operator norm of
a matrix.

3.5. Globally comparable normalized filter importance score

In convolutional neural networks, different convolutional
layers have different number of filters. In initial layers, low
level features that are common to almost all classes are ex-
tracted using few convolutional filters and then more abstract
features are generated from these features using convolutional
filters of deeper layers. We generally observe that the number
of filters in a convolutional layer increases as the layer becomes
deeper in order to produce more discriminative features. For

8

example, in VGG16 the first convolutional layer has 64 filters,
whereas the tenth convolutional layer contains 512 filters. It
indicates that 64 filters in the first layer are responsible for pro-
ducing a feature map of the second layer, while 512 filters in the
tenth layer contribute to producing a feature map of the eleventh
layer. In order to calculate the effective contribution of a filter,
FPSL normalizes the importance score by the number of filters
present in a layer so that their contribution can be compared
across the layers. Proposed method computes the normalized
importance score (I[l]

j0
) of the jth0 filter of the lth layer by the fol-

lowing equation,

I[l]
j0
=
∥f[l]

j0,:
∥1∥f[l+1]

:, j0
∥1

m
(19)

where, m indicates the number of filters present in lth layer.
Once the importance score of each filter has been computed
with the Eq. 19, then we prune the least important filters from
the network. We summarize the proposed method in Algorithm
1

Algorithm 1: Algorithm Description of FPSL
Input: CNN model (M); Desired FLOPs reduction

(D%)
Given: Prune filters per epoch (F%)
Output: Compressed model M̂∗ after pruning and

retraining
1 for epoch e← 1 to E do
2 if e == 1 then
3 Initialize current FLOPs reduction percentage

C = 0
4 Target FLOPs achieved flag T = 0
5 Train the model or load pretrained state M∗

6 else
7 Load M∗

e−1 as the base model
8 end
9 if T == 0 then

10 Compute filter importance for each filter with
Eq. 19

11 Sort all filters as per their importance score
12 Obtain Me after trimming F% least important

filters
13 Compute C = 100*(1- CountFLOPs(Me)

CountFLOPs(M))
14 if C <= D then
15 T = 0
16 else
17 T = 1
18 end
19 else
20 Do not prune further
21 end
22 Fine tune the small model for one epoch and obtain

M∗
e

23 end

4. Experiments

In this section, we show the observation results obtained from
the experiments on filter pruning. Further, we illustrate the per-
formance of FPSL for different datasets and architectures.

4.1. Experimental Setup
4.1.1. Training Configuration

We use Stochastic Gradient Descent (SGD) optimizer with
a batch size of 256 to train all base models. For experiments
with CIFAR datasets, we employ a 300-epoch training sched-
ule with an initial learning rate of 0.1 for the first 150 epochs
and then divided it by 10 at the 150th and at the 225th epoch.
VGG16 and Residual Nets (ResNet56, ResNet110) are trained
using the same hyperparameters for CIFAR experiments. The
momentum is set to 0.9 for all our experiments. The weight
decay is set at 5 × 10−4 and 1 × 10−4 for CIFAR and ImageNet
experiments respectively. For ImageNet dataset, FPSL directly
loads PyTorch’s [40] pretrained model for ResNet50 like [4]
and MobileNetV2 uses a 150 epochs training schedule with an
initial learning rate of 0.04 and then divided by 2 at every 20
epochs interval.

4.1.2. Pruning and Retraining Configuration
We trim a small but fixed percentage of filters in every epoch

and perform retraining for one epoch. First few epochs are
used to iteratively prune and retrain until the FLOPs target is
achieved and then the remaining epochs are used only for fine-
tuning. The pruned model uses the same hyperparameters as the
base model to complete retraining and fine-tuning. We prune
1% of the filters of the entire network in every epoch for CI-
FAR experiments. For the ILSVRC-12 dataset, we retrain and
fine-tune ResNet50 and MobileNetV2 for 100 and 150 epochs
respectively, compared to 300 for CIFAR datasets. So we prune
large number of filters, specifically 2.5% filters from the model
every epoch for the ILSVRC-12 dataset. This ensures that the
final pruned model gets sufficient epochs for fine tuning. FPSL
adaptively prunes different amount of filters from different lay-
ers while following iterative prune and retrain. We retain at
least two filters in each layer to avoid severe performance degra-
dation or layer collapse at any time during pruning. We utilize
a step scheduler with a initial learning rate of 0.1 divided by 10
in every 30 epochs for ResNet50. For multi-branch networks,
we prune all convolutional layers except the last one of each
residual block to avoid structural inconsistency due to pruning.
FPSL can also be applied to the base model without pretraining.
In these cases, we prune after the model has been trained for a
few number of epochs, specifically 5% of the total epochs in all
experiments.

4.2. Results and Analysis
Here we compare the performance of FPSL with several state

of the art (SOTA) pruning methods including LRMF [56], MFP
[12], Filter Sketch [26], LFPC [8], HRank [28], ASFP [9], SFP
[10], FPGM [11], GAL [30]. Although FPSL is an extremely
fast feature-independent filter pruning method but this compari-
son includes all types of recent filter pruning methods irrespec-
tive of whether it is feature dependent or optimization based.

9

Fig. 5. Performance of FPSL on CIFAR10 with ResNet56 (left) and ResNet110 (right), at varying FLOPs reduction. FPSL successfully maintains the
baseline accuracy while reducing FLOPs by 50% for both ResNet56 and ResNet110. FPSL offers a practical inference acceleration of 1.67 times for
ResNet56 and 1.63 times for ResNet110 compared to the corresponding unpruned model, without any compromise in performance.

We demonstrate the superiority of FPSL over existing methods
in terms of performance in this section. We also observe the
performance of the pruned model compared to the unpruned.
Here, baseline accuracy, unpruned accuracy, and the original
network’s accuracy these three terminologies indicate the same
thing, i.e., the accuracy of the model when no filters are pruned.

Table 1. Pruning Results of ResNet56 on CIFAR10.

Method
Unpruned
Top1
Acc (%)

Pruned
Top1
Acc (%)

Acc.
drop (%)

FLOPs
rdcn (%)

CP [13] 92.8 91.8 1.00 50
DCP [63] 93.8 93.49 0.31 50
HRank [28] 93.26 93.17 0.09 50
ASFP [9] 93.59 93.12 0.47 52.6
SFP [10] 93.59 93.35 0.24 52.6
MFP [12] 93.59 93.56 0.03 52.6
LRMF [56] 93.59 93.25 0.34 52.6
FPGM [11] 93.59 93.26 0.33 52.6
LFPC [8] 93.59 93.24 0.35 52.9
FPSL 93.57 93.42 0.15 53.4

4.2.1. ResNet on CIFAR10
We apply FPSL on multi-branch networks like ResNet56,

ResNet110 while using CIFAR10 dataset and observe the prun-
ing results that are tabulated in Table 1 and Table 2 respectively.
FPSL reduces the computational burden of ResNet56 by more
than half (53.4%) with a small reduction of 0.15% in top 1 ac-
curacy as shown in Table 1.

Similarly, Table 2 shows that FPSL reduces 60.8% FLOPs
for ResNet110 CIFAR10 configuration but still provides top-1
accuracy of 93.74% which is better than the recent methods like
LRMF [56], LFPC [8], HRank [28] and many others. More-
over, FPSL has shown significant better performance than the

Table 2. Pruning Results of ResNet110 on CIFAR10.

Method
Unpruned
Top1
Acc (%)

Pruned
Top1
Acc (%)

Acc.
drop (%)

FLOPs
rdcn (%)

PFEC [23] 93.53 93.3 0.23 38.6
GAL [30] 93.5 92.74 0.76 48.5
SFP [10] 93.68 92.90 0.78 52.3
ASFP [9] 93.68 93.1 0.58 52.3
MFP [12] 93.68 93.31 0.37 52.3
FPGM [11] 93.68 93.74 -0.06 52.3
LRMF [56] 93.68 93.88 -0.20 52.3
HRank [28] 93.5 93.36 0.14 58.2
LFPC [8] 93.68 93.07 0.61 60.3
FPSL 93.81 93.74 0.07 60.8

existing filter norm based methods like PFEC [23], SFP [10],
ASFP [9], e.g. - SFP decreases 52.3% FLOPs with the accuracy
drop of 0.78% whereas FPSL provides 60.8% FLOPs reduction
with a very small amount of 0.07% accuracy drop. We also ob-
serve the performance of the pruned model while varying the
flops reduction percentage. FPSL reduces 50% FLOPs without
degrading the model performance both for ResNet56 CIFAR10
(Fig. 5 (left)) and ResNet110 CIFAR10 (Fig. 5 (right)). Fig. 5
also highlights that reducing half of the FLPOs leads to a prac-
tical inference acceleration of 1.67 times for ResNet56 and 1.63
times for ResNet110 compared to the corresponding unpruned
models.

4.2.2. VGG on CIFAR datasets
We also apply our method on single branch networks like

VGG16 which has 13 convolutional layers and 3 fully con-
nected layers. Table 3 indicates that FPSL improves over base-
line accuracy by 0.07% for CIFAR10 while lowering compu-
tational burden by 53.6%. Furthermore, even for 100 class

10

Fig. 6. Filter importance of all the filters for ResNet50 ImageNet configuration. Horizontal green line indicates the threshold, filters with importance score
lesser than the threshold is pruned. Epoch number and the reduction in total FLOPs compared to base model is highlighted on the top of each subplot.

classification with the CIFAR100 [22] dataset, FPSL does not
degrade the model performance of VGG16 while saving more
than 50% FLOPs. Under the similar FLOPs constraints, FPSL
outperforms the existing methods like HRank [28] which de-
creases the classification accuracy by 0.53% whereas FPSL in-
creases the classification accuracy by 0.07% for CIFAR10.

Table 3. Pruning Results of VGG16 on CIFAR datasets.

Model Dataset Method
Unpruned
Top1
Acc (%)

Pruned
Top1
Acc (%)

Acc.
drop (%)

FLOPs
rdcn (%)

VGG16 CIFAR10 PFEC [23] 93.25 93.4 -0.15 34.2
GAL [30] 93.96 93.42 0.54 45.2
HRank [28] 93.96 93.43 0.53 53.5
FPSL 93.9 93.97 -0.07 53.6

VGG16 CIFAR100 GFI-AP [39] 73.97 73.68 0.29 53.5
FPSL 74.29 74.3 -0.01 53.6

4.2.3. ResNet50 on ImageNet
We evaluate the performance of FPSL when pruning

ResNet50, which is utilized for the ImageNet dataset. It is

difficult to prune ResNet50 on ImageNet without performance
degradation since it is a large-scale diverse dataset having 1000
classes. However, ResNet-50 is often used to evaluate prun-
ing algorithms due to its strong generalization capabilities to
other architectures. We observe from Table 4 that FPSL re-
duces 42.7% FLOPs but still maintains the baseline top-1 ac-
curacy for ResNet50 ImageNet configuration. Table 4 also
shows that FPSL achieves 54.5% FLOPs reduction while de-
creasing the top-1 accuracy by 0.94% whereas existing meth-
ods like FPGM [11] decrease the top-1 by 2.02% and MFP [12]
by 1.29% even with lesser than 54.5% FLOPs reduction. As
seen in Fig. 1, FPSL consistently outperforms SOTA and deliv-
ers superior top-1 accuracy for varying FLOPs reduction rates.
This highlights the superiority of FPSL over other pruning al-
gorithms even for challenging datasets like ImageNet. Fig. 6
shows the variation in the filter importance and threshold while
performing iterative pruning and retraining. It indicates that as
the pruning increases with iteration, more FLOPs are reduced
over time. The importance score and threshold increase with
time as fewer filters in the retained model become responsible
for performing the same classification task.

11

Table 4. FLOPS comparison across different pruning methods for ImageNet classification with ResNet50.

Method
Unpruned

FLOPs
(B)

Unpruned
Top-1
Acc.

Pruned
Top-1
Acc.

Top-1
Acc. ↓

Unpruned
Top-5
Acc.

Pruned
Top-5
Acc.

Top-5
Acc. ↓

Pruned
FLOPs
(B)

FLOPs
↓ (%)

SSS-26 [17] 4.09 76.15% 74.18% 1.97% 92.96% 91.91% 1.05% 2.82 31.90%
CP [13] 4.09 76.15% 72.30% 3.85% 92.96% 90.80% 2.16% 2.73 34.10%
FilterSketch-0.7 [26] 4.09 76.13% 75.22% 0.91% 92.86% 92.41% 0.45% 2.64 35.50%
SFP [10] 4.09 76.15% 74.61% 1.54% 92.87% 92.06% 0.81% 2.39 41.80%
Epruner-0.71 [27] 4.13 76.01% 74.95% 1.06% 92.96% 92.36% 0.60% 2.37 42.60%
MFP 30% [12] 4.09 76.15% 75.67% 0.48% 92.87% 92.81% 0.06% 2.36 42.20%
FPSL 0.42 4.12 76.15% 76.15% 0.00% 92.87% 92.92% -0.05% 2.36 42.70%
GAL [30] 4.09 76.15% 71.95% 4.20% 92.96% 90.79% 2.17% 2.33 43.70%
SSS-32 [17] 4.09 76.12% 71.82% 4.30% 92.86% 90.79% 2.07% 2.33 43.70%
HRank [28] 4.09 76.15% 75.01% 1.14% 92.96% 92.33% 0.63% 2.3 43.90%
FilterSketch-0.6 [26] 4.09 76.13% 74.68% 1.45% 92.86% 92.17% 0.69% 2.23 45.50%
White-Box [57] 4.09 76.15% 75.32% 0.83% 92.96% 92.43% 0.53% 2.22 45.60%
ABP [48] 3.89 75.88% 74.80% 1.08% 92.76% 92.36% 0.40% 2.21 42.80%
GFI-AP [39] 3.89 75.95% 74.61% 1.34% 92.89% 92.01% 0.88% 2.01 48.33%
FPGM [11] 4.09 76.15% 74.13% 2.02% 92.96% 92.87% 0.09% 1.9 53.50%
MFP 40% [12] 4.09 76.15% 74.86% 1.29% 92.87% 92.43% 0.44% 1.9 53.50%
FPSL 0.54 4.12 76.15% 75.21% 0.94% 92.87% 92.44% 0.43% 1.88 54.50%
RRBP [62] 4.09 76.15% 73.00% 3.15% 92.96% 91.00% 1.96% 1.86 54.50%
GAL [30] 4.09 76.15% 71.80% 4.35% 92.96% 90.82% 2.14% 1.84 55.60%
ThiNet 50 [37] 3.86 75.30% 72.03% 3.27% 92.20% 90.99% 1.21% 1.71 55.80%
HRel [43] 4.12 76.15% 74.54% 1.61% 92.87% 92.12% 0.75% 1.69 58.90%
LFPC [8] 4.09 76.15% 74.18% 1.97% 92.96% 91.92% 1.04% 1.61 60.80%
HRank [28] 4.09 76.15% 71.98% 4.17% 92.96% 91.01% 1.95% 1.55 62.60%
FPSL 0.62 4.12 76.15% 74.55% 1.60% 92.87% 92.06% 0.81% 1.54 62.60%

4.2.4. MobileNetV2 on ImageNet
MobileNetV2 is one of the most efficient networks, espe-

cially designed for mobile and edge devices, that uses low com-
putational power. The use of depth-wise separable convolution
and inverted residual blocks makes MobileNetV2 a compact
architecture. So pruning MobileNetV2 is extremely challeng-
ing, especially when applied to the ImageNet dataset. However
FPSL can still reduce 20% FLOPs with only 0.52% top-1 accu-
racy drop for MobileNetV2 ImageNet configuration as shown
in Table 5. Moreover, it provides a 2.1% improvement in terms
of top-1 accuracy drop over competing methods like DCP [63]
while reducing more FLOPs (45.8%).

Table 5. Pruning Results of MobileNetV2 on ImageNet.

Method
Unpruned
Top1
Acc (%)

Pruned
Top1
Acc (%)

Acc.
drop (%)

FLOPs
rdcn (%)

FPSL 70.36 69.84 0.52 19.5

DCP [63] 70.11 64.22 5.89 44.8
FPSL 70.36 66.59 3.77 45.8

4.2.5. Parameters reduction while applying FPSL
In this subsection, we examine the reduction in parameters

achieved through FPSL while targeting a specific percentage of
FLOPs (computational operations) reduction. It is important to
note that FLOPs, which determine the computational complex-
ity, typically surpass the number of parameters in deep CNN
models by a factor of 10 to 200 due to the increased number of
convolutional operations. For instance, the unpruned ResNet50
model has 25.56 million parameters but requires 4.12 billion
FLOPs for ImageNet classification. Table 6 highlights the re-

lationship between the desired FLOPs reduction (%), the cor-
responding decrease in the number of parameters, and the per-
centage of parameters eliminated using FPSL. In this table, the
abbreviations C10 and C100 denote CIFAR10 and CIFAR100
datasets, respectively. We observe that employing FPSL results
in a substantial 66.9% reduction in network parameters, equat-
ing to the elimination of 10.23 million parameters, when tar-
geting a 36.3% decrease in FLOPs for the CIFAR100 VGG16
configuration.

Table 6. Parameters and FLOPs reduction while applying FPSL

Data Arch
Params
rdcn (M)

Params
rdcn (%)

FLOPs
rdcn (M)

FLOPs
rdcn (%)

Acc.
drop (%)

C10 ResNet56 0.36 42.6 68.1 53.4 0.15
C10 ResNet110 0.89 51.6 156.7 60.8 0.07
C10 VGG16 13.09 86 168.7 53.6 -0.07
C100 VGG16 10.23 66.9 114.6 36.3 -0.01

ImageNet ResNet50 6.98 27.3 1759 42.7 0
ImageNet ResNet50 10.58 41.4 2246 54.5 0.94
ImageNet ResNet50 13.22 51.7 2579 62.6 1.6

ImageNet MobileNetV2 0.5 14.2 65.8 20.5 0.52

4.3. More Explorations

4.3.1. FPSL using only current or subsequent layer
Here we investigate the consequences of including filter con-

tributions from both the current and the succeeding layer, as
opposed to either the current or succeeding layer. FPSL-C indi-
cates when the contribution of a filter belonging to the current
layer is only used to determine the filter importance. FPSL-S
indicates when the channel contribution of filters from the suc-
ceeding layer is only used to determine the filter importance of
the current layer. Fig. 7 shows that FPSL, which uses both

12

Fig. 7. Performance comparison between FPSL, FPSL C and FPSL S for
ResNet56 and ResNet110 for CIFAR10 classification. FPSL C indicates
when only the current layer filter information is used for filter importance.
similarly, FPSL S indicates when only the succeeding layer filter informa-
tion is used for filter importance. FPSL outperforms both FPSL-C and
FPSL-S in all cases as it uses both the current and the succeeding layer
filter information to compute filter importance.

the current and the succeeding layer filter contribution, outper-
forms FPSL-C and FPSL-S for both CIFAR10 ResNet56 and
CIFAR10 ResNet110 configuration. FPSL provides 0.26% im-
provement over FPSL-C and 0.37% improvement over FPSL-S
while pruning 53% FLOPs for CIFAR10 ResNet56 configura-
tion. Similarly, when we reduce 61% FLOPs from ResNet110
while performing CIFAR10 classification, we observe that
FPSL-S provides better results than FPSL-C. However FPSL
outperforms FPSL-C and FPSL-S also in this case.

4.3.2. Computation time to determine filter importance

We also compare the time required to compute the filter im-
portance using a feature independent method (FPSL) with a fea-
ture dependent method (GFI-AP[39]) in Table 7. We have used
a system with Intel® Xeon(R) Silver 4214 CPU @ 2.20GHz
× 48 processor, 128GB RAM and a NVIDIA RTX 2080 TI
graphics driver to perform this experiment for both methods.
We find that GFI-AP requires 311.6 secs. and 956.2 secs.
to compute the filter importance of all the filters belong to
ResNet56 and ResNet110 while performing CIFAR10 classi-
fication. Whereas, FPSL takes less than 2 secs. to compute the
filter importance for both configuration. This shows that FPSL
is exceptionally fast irrespective of the network size. For deeper
models like ResNet110, the superiority of FPSL becomes more
prominent as feature dependent methods require enormous time
to compute and process the feature maps of the entire network
for all training examples.

Table 7. Computation time to compute filter importance using GFI-AP
(feature dependent) and FPSL (feature independent) method on ResNet56
and ResNet110 while performing CIFAR10 classification

Arch Data Time (Sec.)
GFI-AP[39] FPSL

C10 R56 311.6 1.3
C10 R110 956.2 1.85

4.3.3. Effect of pretraining on FPSL
Finally we apply FPSL on models which are not pretrained

to observe the effects of pretraining on pruning. We start with
a base model when it is randomly initialized. Here, we use 5%
of the total training epochs for training the base model, and we
start iterative pruning and retraining from the next epoch. We
refer to this method as FPSL-NP indicating FPSL applied on a
model which is not pretrained.

Fig. 8. Performance comparison between FPSL and FPSL NP for different
datasets and architectures. FPSL NP means when FPSL applied to a base
model which is Not Pretrained. Top-1 accuracy drop for both FPSL and
FPSL NP are very close to each other for similar amount of FLOPs reduc-
tion for both VGG and Residual nets while working with CIFAR datasets

We observe from Fig. 8 that the top-1 accuracy drop for
FPSL and FPSL-NP is very close to each other under simi-
lar FLOPs constraint for most of the dataset architecture con-
figuration; for example- the top-1 accuracy drop compared to
baseline is 0.07% for FPSL whereas it is 0.25% for FPSL-
NP while reducing more than 60% FLOPs in both cases for
CIFAR10 ResNet110 configuration. So FPSL can efficiently
prune the base models even if they are not pretrained. How-
ever the difference between FPSL and FPSL-NP increases for
large diverse datasets like ImageNet. For example, FPSL
provides no drop in top-1 accuracy but FPSL-NP provides a
0.65% top-1 accuracy drop while reducing 43% FLOPs for
ResNet50 ImageNet configuration and the difference between
FPSL and FPSL-NP becomes 0.41% with 20% FLOPs reduc-
tion while utilizing MobileNetV2 for ImageNet classification.

13

It indicates that the impact of pretraining becomes prominent
when the dataset is challenging and the base model is relatively
small.

5. Limitations

While FPSL offers valuable benefits like deploying compact
models on resource-constrained systems, iterative pruning and
retraining for improved decision-making, and enhanced model
interpretability, it is also important to discuss its limitations.
Firstly, FPSL reduces computational complexity during infer-
ence but requires additional computational resources for the
pruning and retraining stages. Secondly, although we chose the
same pruning fraction per epoch for simplicity, further improve-
ment in the performance can be achieved by selecting different
pruning fractions per epoch based on the training stage. Lastly,
while our method has been effective for pruning convolutional
neural networks, it cannot be directly applied to transformer-
based models. Further research is needed to explore how the
principles of FPSL can be extended and utilized for attention-
based models, such as transformers.

6. Conclusions

To conclude, we propose FPSL that considers how pruning
a filter impact the feature maps in the immediate next layer.
We find that a filter and its corresponding channel of all the
filters in the immediate next layer both are directly responsi-
ble for generating the feature maps of the next layer. Hence,
FPSL considers both contributions when estimating the impor-
tance of a filter, as opposed to previous methods that rely only
on the current layer’s weights. FPSL does not require any fea-
ture map information to compute importance. Thus, our fast
algorithm allows us to perform iterative pruning and retraining
so that a large number of filters are not pruned at a single epoch
which results in an unrecoverable accuracy drop. Furthermore,
unlike existing methods, FPSL does not require layer-wise re-
training, thorough hyperparameter search for fine-tuning, or hu-
man intervention to specify per layer filter pruning percent-
age. Rather, it automatically prunes filters until the target
FLOPs is achieved. FPSL outperforms the SOTA filter prun-
ing methods. For instance, FPSL lowers 42.7% FLOPs with-
out sacrificing accuracy, whereas the best competing method
decreases top-1 accuracy by 0.48% under the similar FLOPs
constraint for ResNet50 ImageNet configuration. The capa-
bility of FPSL to facilitate the deployment of advanced deep
learning models on low-power devices demonstrates its poten-
tial to drive several positive social impacts. The increased ac-
cessibility of AI technologies can stimulate innovation and pro-
mote development in various sectors. FPSL enables faster in-
ference in pruned models, enhancing real-time performance in
domains such as healthcare, autonomous vehicles, and smart
systems, thereby improving timely decision-making. More-
over, FPSL contributes to environmental sustainability and en-
ergy efficiency by reducing energy consumption and the carbon
footprint associated with AI applications.

References

[1] Beyer, L., Zhai, X., Royer, A., Markeeva, L., Anil, R., Kolesnikov, A.,
2022. Knowledge distillation: A good teacher is patient and consistent,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10925–10934.

[2] Dai, X., Yin, H., Jha, N.K., 2019. Nest: A neural network synthesis tool
based on a grow-and-prune paradigm. IEEE Transactions on Computers
68, 1487–1497.

[3] Dong, X., Chen, S., Pan, S., 2017. Learning to prune deep neural net-
works via layer-wise optimal brain surgeon. Advances in Neural Infor-
mation Processing Systems 30, 4857–4867.

[4] Gao, S., Huang, F., Cai, W., Huang, H., 2021. Network pruning via per-
formance maximization, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9270–9280.

[5] Guo, J., Zhang, W., Ouyang, W., Xu, D., 2020. Model compression using
progressive channel pruning. IEEE Transactions on Circuits and Systems
for Video Technology .

[6] Hayashi, K., Yamaguchi, T., Sugawara, Y., Maeda, S.i., 2019. Explor-
ing unexplored tensor network decompositions for convolutional neural
networks. Advances in Neural Information Processing Systems 32.

[7] He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for
image recognition, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 770–778.

[8] He, Y., Ding, Y., Liu, P., Zhu, L., Zhang, H., Yang, Y., 2020. Learning
filter pruning criteria for deep convolutional neural networks acceleration,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2009–2018.

[9] He, Y., Dong, X., Kang, G., Fu, Y., Yan, C., Yang, Y., 2019a. Asymptotic
soft filter pruning for deep convolutional neural networks. IEEE transac-
tions on cybernetics .

[10] He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y., 2018. Soft filter prun-
ing for accelerating deep convolutional neural networks. arXiv preprint
arXiv:1808.06866 .

[11] He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y., 2019b. Filter pruning via
geometric median for deep convolutional neural networks acceleration,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4340–4349.

[12] He, Y., Liu, P., Zhu, L., Yang, Y., 2022. Filter pruning by switching
to neighboring cnns with good attributes. IEEE Transactions on Neural
Networks and Learning Systems .

[13] He, Y., Zhang, X., Sun, J., 2017. Channel pruning for accelerating very
deep neural networks, in: Proceedings of the IEEE international confer-
ence on computer vision, pp. 1389–1397.

[14] Hinton, G., Vinyals, O., Dean, J., et al., 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 2.

[15] Hu, H., Peng, R., Tai, Y.W., Tang, C.K., 2016. Network trimming: A
data-driven neuron pruning approach towards efficient deep architectures.
arXiv preprint arXiv:1607.03250 .

[16] Huang, Q., Zhou, K., You, S., Neumann, U., 2018. Learning to prune fil-
ters in convolutional neural networks, in: 2018 IEEE Winter Conference
on Applications of Computer Vision (WACV), IEEE. pp. 709–718.

[17] Huang, Z., Wang, N., 2018. Data-driven sparse structure selection for
deep neural networks, in: Proceedings of the European conference on
computer vision (ECCV), pp. 304–320.

[18] Idelbayev, Y., Carreira-Perpinán, M.A., 2020. Low-rank compression
of neural nets: Learning the rank of each layer, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
8049–8059.

[19] Ji, Y., Liang, L., Deng, L., Zhang, Y., Zhang, Y., Xie, Y., 2018. Tetris:
Tile-matching the tremendous irregular sparsity. Advances in neural in-
formation processing systems 31.

[20] Kang, M., Han, B., 2020. Operation-aware soft channel pruning using
differentiable masks, in: International Conference on Machine Learning,
PMLR. pp. 5122–5131.

[21] Kim, H., Khan, M.U.K., Kyung, C.M., 2019. Efficient neural network
compression, in: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 12569–12577.

[22] Krizhevsky, A., Hinton, G., et al., 2009. Learning multiple layers of
features from tiny images .

[23] Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P., 2016. Pruning
filters for efficient convnets. arXiv preprint arXiv:1608.08710 .

[24] Li, Y., Gu, S., Mayer, C., Gool, L.V., Timofte, R., 2020. Group spar-

14

sity: The hinge between filter pruning and decomposition for network
compression, in: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 8018–8027.

[25] Li, Y., Pan, Y., Yao, T., Mei, T., 2022. Comprehending and ordering
semantics for image captioning, in: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 17990–17999.

[26] Lin, M., Cao, L., Li, S., Ye, Q., Tian, Y., Liu, J., Tian, Q., Ji, R., 2021a.
Filter sketch for network pruning. IEEE Transactions on Neural Networks
and Learning Systems .

[27] Lin, M., Ji, R., Li, S., Wang, Y., Wu, Y., Huang, F., Ye, Q., 2021b. Net-
work pruning using adaptive exemplar filters. IEEE Transactions on Neu-
ral Networks and Learning Systems .

[28] Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L., 2020.
Hrank: Filter pruning using high-rank feature map, in: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pp. 1529–1538.

[29] Lin, M., Zhang, Y., Li, Y., Chen, B., Chao, F., Wang, M., Li, S., Tian, Y.,
Ji, R., 2022. 1xn pattern for pruning convolutional neural networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence 45, 3999–
4008.

[30] Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., Huang, F., Doer-
mann, D., 2019. Towards optimal structured cnn pruning via generative
adversarial learning, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2790–2799.

[31] Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C., 2017. Learn-
ing efficient convolutional networks through network slimming, in: Pro-
ceedings of the IEEE International Conference on Computer Vision, pp.
2736–2744.

[32] Liu, Z., Luo, W., Wu, B., Yang, X., Liu, W., Cheng, K.T., 2020. Bi-real
net: Binarizing deep network towards real-network performance. Inter-
national Journal of Computer Vision 128, 202–219.

[33] Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.T., Sun, J.,
2019. Metapruning: Meta learning for automatic neural network channel
pruning, in: Proceedings of the IEEE/CVF international conference on
computer vision, pp. 3296–3305.

[34] Liu, Z., Xu, J., Peng, X., Xiong, R., 2018. Frequency-domain dynamic
pruning for convolutional neural networks, in: Advances in Neural Infor-
mation Processing Systems, pp. 1043–1053.

[35] Liu, Z., Zhang, X., Shen, Z., Wei, Y., Cheng, K.T., Sun, J., 2021. Joint
multi-dimension pruning via numerical gradient update. IEEE Transac-
tions on Image Processing 30, 8034–8045.

[36] Luo, J.H., Wu, J., 2017. An entropy-based pruning method for cnn com-
pression. arXiv preprint arXiv:1706.05791 .

[37] Luo, J.H., Zhang, H., Zhou, H.Y., Xie, C.W., Wu, J., Lin, W., 2018.
Thinet: pruning cnn filters for a thinner net. IEEE transactions on pat-
tern analysis and machine intelligence 41, 2525–2538.

[38] Maile, K., Rachelson, E., Luga, H., Wilson, D.G., 2022. When, where,
and how to add new neurons to anns, in: International Conference on
Automated Machine Learning, PMLR. pp. 18–1.

[39] Mondal, M., Das, B., Roy, S.D., Singh, P., Lall, B., Joshi, S.D., 2022.
Adaptive cnn filter pruning using global importance metric. Computer
Vision and Image Understanding 222, 103511.

[40] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al., 2019. Pytorch:
An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32.

[41] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al., 2015. Im-
agenet large scale visual recognition challenge. International journal of
computer vision 115, 211–252.

[42] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C., 2018.
Mobilenetv2: Inverted residuals and linear bottlenecks, in: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp.
4510–4520.

[43] Sarvani, C., Ghorai, M., Dubey, S.R., Basha, S.S., 2022. Hrel: Filter
pruning based on high relevance between activation maps and class labels.
Neural Networks 147, 186–197.

[44] Shi, J., Xu, J., Tasaka, K., Chen, Z., 2020. Sasl: saliency-adaptive sparsity
learning for neural network acceleration. IEEE Transactions on Circuits
and Systems for Video Technology 31, 2008–2019.

[45] Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 .

[46] Singh, P., Verma, V.K., Rai, P., Namboodiri, V., 2020. Leveraging fil-
ter correlations for deep model compression, in: Proceedings of the
IEEE/CVF Winter Conference on applications of computer vision, pp.
835–844.

[47] Tang, Y., Wang, Y., Xu, Y., Deng, Y., Xu, C., Tao, D., Xu, C., 2021.
Manifold regularized dynamic network pruning, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5018–5028.

[48] Tian, G., Sun, Y., Liu, Y., Zeng, X., Wang, M., Liu, Y., Zhang, J., Chen, J.,
2021. Adding before pruning: Sparse filter fusion for deep convolutional
neural networks via auxiliary attention. IEEE Transactions on Neural
Networks and Learning Systems .

[49] Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S., 2019. Haq: Hardware-
aware automated quantization with mixed precision, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8612–8620.

[50] Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H., 2016. Learning structured
sparsity in deep neural networks. Advances in neural information pro-
cessing systems 29.

[51] Xie, X., Cheng, G., Wang, J., Yao, X., Han, J., 2021. Oriented r-cnn for
object detection, in: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 3520–3529.

[52] Yang, Y., Zhuang, Y., Pan, Y., 2021. Multiple knowledge representa-
tion for big data artificial intelligence: framework, applications, and case
studies. Frontiers of Information Technology & Electronic Engineering
22, 1551–1558.

[53] Ye, J., Lu, X., Lin, Z., Wang, J.Z., 2018. Rethinking the smaller-norm-
less-informative assumption in channel pruning of convolution layers.
arXiv preprint arXiv:1802.00124 .

[54] Yu, R., Li, A., Chen, C.F., Lai, J.H., Morariu, V.I., Han, X., Gao, M., Lin,
C.Y., Davis, L.S., 2018. Nisp: Pruning networks using neuron importance
score propagation, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 9194–9203.

[55] Zeng, L., Tian, X., 2018. Accelerating convolutional neural networks by
removing interspatial and interkernel redundancies. IEEE transactions on
cybernetics 50, 452–464.

[56] Zhang, X., Xie, W., Li, Y., Lei, J., Du, Q., 2021. Filter pruning via learned
representation median in the frequency domain. IEEE Transactions on
Cybernetics .

[57] Zhang, Y., Lin, M., Lin, C.W., Chen, J., Wu, Y., Tian, Y., Ji, R., 2022a.
Carrying out cnn channel pruning in a white box. IEEE Transactions on
Neural Networks and Learning Systems .

[58] Zhang, Y., Lin, M., Lin, Z., Luo, Y., Li, K., Chao, F., Wu, Y., Ji, R.,
2022b. Learning best combination for efficient n: M sparsity. Advances
in Neural Information Processing Systems 35, 941–953.

[59] Zhang, Y., Luo, Y., Lin, M., Zhong, Y., Xie, J., Chao, F., Ji, R., 2023.
Bi-directional masks for efficient n: M sparse training. arXiv preprint
arXiv:2302.06058 .

[60] Zhou, A., Ma, Y., Zhu, J., Liu, J., Zhang, Z., Yuan, K., Sun, W., Li, H.,
2021. Learning n: m fine-grained structured sparse neural networks from
scratch. arXiv preprint arXiv:2102.04010 .

[61] Zhou, Y., Yen, G.G., Yi, Z., 2019a. A knee-guided evolutionary algorithm
for compressing deep neural networks. IEEE transactions on cybernetics
51, 1626–1638.

[62] Zhou, Y., Zhang, Y., Wang, Y., Tian, Q., 2019b. Accelerate cnn via re-
cursive bayesian pruning, in: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 3306–3315.

[63] Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J., Zhu,
J., 2018. Discrimination-aware channel pruning for deep neural networks,
in: Advances in Neural Information Processing Systems, pp. 875–886.

