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1 Epipolar geometry

Fundamental geometric relationship between two perspective cameras:

epipole: is the point of intersection of the line joining the optical centers - the baseline

- with the image plane. The epipole is the image in one camera of the optical
center of the other camera.

epipolar plane: is the plane defined by a 3D point and the optical centers. Or,
equivalently, by an image point and the optical centers.

epipolar line: is the line of intersection of the epipolar plane with the image plane.
It is the image in one camera of a ray through the optical center and the image
point in the other camera. All epipolar lines intersect at the epipole.

Epipolar geometry provides a fundamental constraint for the correspon-

dence problem

1.1 Epipolar geometry: uncalibrated case

• Given the two cameras 1 and 2, we have the camera equations:

x1 = P̃1X and x2 = P̃2X



• The optical center projects as

P̃iX = 0

• Writing
P̃i = [Pi | −Piti]

where Pi is 3 × 3 non-singular we have that ti is the optical center.

[Pi | −Piti]

[

ti

1

]

= 0

• The epipole e2 in the second image is the projection of the optical center of the
first image:

e2 = P̃2

[

t1

1

]

• The projection of point on infinity along the optical ray < t1,x1 > on to the
second image is given by:

x2 = P2P1
−1x1

• The epipolar line < e2,x2 > is given by the cross product e2 × x2.

• If [e2]× is the 3 × 3 antisymmetric matrix representing cross product with e2,
then we have that the epipolar line is given by

[e2]× P2P1
−1x1 = Fx1

• Any point x2 on this epipolar line satisfies

x2
TFx1 = 0

• F is called the fundamental matrix. It is of rank 2 and can be computed
from 8 point correspondences.

• Clearly Fe1 = 0 (degenerate epipolar line) and e2
TF = 0. The epipoles are

obtained as the null spaces of F.



1.2 Epipolar geometry: calibrated case

• There are two camera coordinate systems related by R,T

X′ = RX + T

• Taking the vector product with T followed by the scalar product with X′

X′· (T × RX) = 0

which expresses that vectors OX, O′X′ and OO′ are coplanar.

• This can be written as
X′TEX = 0

where
E = [T]

×
R

is the Essential matrix.

• Image points and rays in Euclidean 3-space are related by:
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• Hence, we have
x′TC′−T

EC−1x = 0

• Thus, the relation between the essential and fundamental matrix is:

F = C′−T
EC−1



1.3 Epipolar geometry: examples



1.4 How to find correspondences

1. Given corners:

2. Unguided matching: Obtain a small number of seed matches using cross-
correlation and pessimistic thresholds.



3. Compute epipolar geometry and reject outliers.

4. Guided matching: Search for matches in a band about the epipolar lines.



2 Structure determination
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2.2 Projective structure using a five point basis

• Select the projection center of the first camera as the coordinate origin (0, 0, 0, 1)T

and that of the second camera as the unit point (1, 1, 1, 1)T .

• Complete the 3D basis by choosing 3 other visible 3D points A1, A2 and A3

such that no four of the five points are coplanar.

• Let a1, a2, a3 and a′

1
, a′

2
, a′

3
be the image projections of A1, A2 and A3 in the

two images.

• Make a projective transformation of each image such that these 3 points and
the epipoles form a standard basis
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• Also fix the 3D coordinates as
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• It follows that

P =


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1 0 0 0
0 1 0 0
0 0 1 0
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• Once P’s are known finding the projective structure of the other points is
straightforward.

Localization errors in any of the points affect subsequent computation

2.3 Robust computation of projective structure

• Choose the first camera as
P = [I | 0]

which corresponds to the world coordinate system having its origin at the optical
center of the first camera, and its axes aligned with the camera axes. It is always
possible to make this choice.



• The choice of the second camera consistent with the fundamental matrix is

P′ = [M′ | e′]

and the fundamental matrix is given as:

F = e′

×M′

• e′ is the projection of the optical center of the first camera, (0T , 1)T , onto the
second image

P′

[

0

1

]

= e′

• Similarly, the optical center of the second camera is is ((M′−1
e′)T , 1)T , and its

projection onto the first image is e.

P

[

M′−1
e′

1

]

= M′−1
e′ = e

• Given P and P′, the 3D point Xi corresponding to a pair of image point xi and
x′

i
can be computed by intersecting the back-projected rays

Xi =

[

0

1

]

+ λ

[

xi

0

]

=

[

M′−1
e′

1

]

+ µ

[

M′−1
xi

0

]

To summarize:

1. Compute the fundamental matrix F from xi ↔ x′

i
.

2. Decompose F as F = e′

×M′.

3. Compute 3D points Xi by intersecting back-projected rays using

P = [I | 0] and P′ = [M′ | e′]



2.4 Projective ambiguity

• Although the two projection matrices define F the converse is not true.

• Suppose P and P′ are two matrices consistent with F, then

x = PX and x′ = P′X′

• But, if H is any arbitrary homography of 3-space, then

x = (PH−1)(HX) and x′ = (P′H−1)(HX′)

• Thus, we can only recover projective structure modulo an unknown homography.

How to recover HPE, the homography that upgrades the projective struc-

ture to Euclidean?



2.5 Examples of projective reconstructionUncalibrated reconstruction exampleOriginal images
Projective/a�ne reconstructions
Euclidean reconstructions
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3 Planes

3.1 Planes and epipolar geometry

• The homography between two planes is represented by a 3 × 3 matrix

x̃′ = Tx

• The epipoles are image projections of a 3D point lying on all planes, because
the line joining the optical centers intersects any plane.

e′ = Te

• Four coplanar points and two points off the plane determine the epipolar geom-
etry.

1. Compute the plane projective transformation T, such that x̃i
′ = Txi, i =

1 . . . 4.

2. Determine the epipole e′ in the x′ image as the intersection of the lines
(Tx5 × x′

5
) and (Tx6 × x′

6
).

3. The epipolar line in the x′ image of any other point x is given as (Tx×e′).

4. F = e′

×T



Plane Projective TransferOriginal images
Transfer and superimposed images
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3.2 Distinguished planes and F

• Let T∗ be a homography between two images through a plane π. Thus we have
(projectively)

x′ = T∗x

• Given F we know e and e′.

• Now if F = [e′]×T∗ is a valid decomposition, then so is F = [e′]×T, where

T = T∗ + e′aT

where a is an arbitrary 3 vector.

• Thus, the most general projection matrices consistent with F are

P = [I | 0] and P′ = [T + e′a | be′]

This is four parameter family, b is an arbitrary scalar.

• The matrix T = T∗ + e′aT is a projective transformation of the plane π rep-
resented by the four vector (0, 0, 0, 1)T , since for points on this plane X

¯ 4
= 0,

and

x = P
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• Thus, the choice of a corresponds to which actual plane in 3-space is π∞.

4 Upgrading projective structure to Euclidean: Self

Calibration and stratification

4.1 From projective to affine

• Identifying the π∞ is equivalent to updating the projective structure to affine
structure.



• An affine reconstruction is where the point coordinates {XA} are known up to
an affine transformation of their Euclidean values {XE}

XA = TAXE =

[

A tA

0 1

]

{A, tA} are unknown and same for all points.

• Choosing a corresponding to the ‘real’ plane at infinity updates the projective
reconstruction to affine.

• T then is the infinite homography, H∞, the homography through the plane
at infinity.

4.2 From affine to metric

• Suppose that
PE = C [I | 0] and P′

E
= C [R | t]

i.e., we assume that the two camera positions have fixed internals.

• Suppose, also, that we have recovered affine structure {XA} and a pair of
projection matrices

P = [I | 0] and P′ = [T | e′]

• Then we know that T = H∞.

• We also know that
PE = PH−1 and P′

E
= P′H−1

where,

H−1 =

[

C−1 0

0 k

]

is the affine transformation that upgrades the affine reconstruction to Euclidean.

• The above gives us
T = H∞ = CRC−1

• Rearranging and using RRT = I, we have

K = T−1KTT

where
K = CCT

• Thus, the internal parameter matrix can be computed from the infinite homog-
raphy using Cholesky decomposition.



5 Some Applications

5.1 Novel view generation using view morphing

[Seitz and Dyer, 1996]
Parallel views

• Suppose the camera has moved from the world origin to the position (Cx, Cy, 0)
and the two projection matrices are

Π0 =





f0 0 0 0
0 f0 0 0
0 0 1 0







and

Π1 =





f1 0 0 −f1Cx

0 f1 0 −f1Cy

0 0 1 0





• Let p0 and p1 are image projections of a scene point P.

• Linear interpolation of p0 and p1 yields

(1 − s)p0 + sp1 = (1 − s)
1

Z
Π0P + s

1

Z
Π1P =

1

Z
ΠsP

where
Πs = (1 − s)Π0 + sΠ1

• Πs represents a camera with center Cs = (sCx, sCy, 0) and focal length fs =
(1 − s)f0 + sf1.

Linear morph is consistent with a physical pin-hole camera.
Non-parallel camera



• When two images share the optical center they are related by a planar homog-
raphy.

• Thus there exist planar homographies between I0 ↔ Î0, I1 ↔ Î1 and Is ↔ Îs.

• View morphing can be achieved as a 3 step process.

The results also hold for uncalibrated cameras.
Demo

Monalisa



5.2 Video compression

Tracking triangulation Sequence 1 Sequence 2

5.3 Panoramas

• When the camera rotates about its optical center or undergoes pure translation
then the views are related by a planar homography.

• Recovering the homography from tracking allows us to stitch the images in to
an image mosaic.

Demo


