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1 The main problems in computer vision

Graphics/Optics

Vision

Image processing

2D Images                                           3D Descriptions

Correspondence problem: Match image projections of a 3D configuration.

Reconstruction problem: Recover the structure of the 3D configuration from image pro-
jections.

Re-projection problem: Is a novel view of a 3D configuration consistent with other views?
(Novel view generation)

All of these require camera calibration in some form.

2 An infinitely strange perspective

• Parallel lines in 3D space converge in images.

• The line of the horizon is formed by ‘infinitely’ distant points (vanishing points).



• Any pair of parallel lines meet at a point on the horizon corresponding to their common
direction.

• All ‘intersections at infinity’ stay constant as the observer moves.

The effects can be modelled mathematically using the ‘linear perspective’ or

a ‘pin-hole camera’ (realized first by Leonardo?)

3 The pin-hole camera model

3.1 Standard perspective projection

If the world coordinates of a point are (X,Y, Z) and the image coordinates are (x, y), then

x = fX/Z and y = fY/Z

The model is non-linear.

3.2 In terms of projective coordinates
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are homogeneous coordinates.
The model is linear in projective geometry.



4 Basics of Projective Geometry

4.1 Affine and Euclidean geometries

• Given a coordinate system, n-dimensional real affine space is the set of all points
parameterized by x = (x1, . . . , xn)t ∈ R

n.

• An affine transformation is expressed as

x′ = Ax + b

where A is a n × n (usually) non-singular matrix and b is a n × 1 vector representing
a translation.

• In the special case of when A is a rotation (i.e., AAt = AtA = I, the the transformation
is Euclidean.

• Transformation of one point (or one axis) completely determines an Euclidean trans-
formation, an affine transformation in n dimensions is completely determined by a
mapping of n + 1 points (3 points for a plane).

• It is easy to verify that an affine transformation preserves parallelism and ratios of
lengths along parallel directions. In fact, coordinates in an affine geometry are defined
in terms of these fundamental invariants. An Euclidean transformation, in addition to
the above, also preserves lengths and angles.

• Since an affine (or Euclidean) transformation preserves parallelism it cannot be used
to describe a pinhole projection. We need to projective geometry to represent such
transformations.

4.2 Spherical geometry

Before we introduce projective geometry let us briefly consider spherical geometry (S2), which
is the geometry on the surface of a sphere.

• The space S2:

S2 =
{
x ∈ R

3 : ||x|| = 1
}

• lines in S2: If one begins at a point in S2 and travels straight ahead on the surface,
one will trace out a great circle. Viewed as a set in R

3 this is the intersection of S2

with a plane through the origin. We will call this great circle a line in S2:
Let ξ be a unit vector. Then,

l =
{
x ∈ S2 : ξtx = 0

}

is the line with pole ξ.



ξ

l

• Two points p and q are antipodal if p = −q.

• Lines in S2 cannot be parallel. Any two lines intersect at a pair of antipodal points.

• A point on a line:
l·x = 0 or lTx = 0 or xT l = 0

• Two points define a line:
l = p × q

• Two lines define a point:
x = l × m

4.3 Projective geometry

• The projective plane P2 is the set of all pairs {x,−x} of antipodal points in S2.

• Two alternative definitions of P2, equivalent to the preceding one are

1. The set of all lines through the origin in R
3.

2. The set of all equivalence classes of ordered triples (x1, x2, x3) of numbers (i.e.,
vectors in R

3) not all zero, where two vectors are equivalent if they are propor-
tional.

• The space P2 can be thought of as the infinite plane tangent to the space S2 and
passing through the point (0, 0, 1)t.
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• Let π : S2 → P2 be the mapping that sends x to {x,−x}. The π is a two-to-one map
of S2 onto P2.

• A line of P2 is a set of the form πl, where l is a line of S2. Clearly, πx lies on πl if and
only if ξtx = 0.

• Homogeneous coordinates: In general, points of real n-dimensional projective

space, Pn,

are represented by n+1 component column vectors (x1, . . . , xn, xn+1) ∈ R
n+1 such that

at least one xi is non-zero and (x1, . . . , xn, xn+1) and (λx1, . . . , λxn, λxn+1) represent
the same point of Pn for all λ 6= 0.

• (x1, . . . , xn, xn+1) is the homogeneous representation of a projective point.

4.4 Canonical injection of R
n into Pn and Points at infinity

• Affine space R
n can be embedded in Pn by

(x1, . . . , xn) → (x1, . . . , xn, 1)

• Affine points can be recovered from projective points with xn+1 6= 0 by

(x1, . . . , xn) ∼ (
x1

xn+1

, . . . ,
xn

xn+1

, 1) → (
x1

xn+1

, . . . ,
xn

xn+1

)

• A projective point with xn+1 = 0 corresponds to a point at infinity.

• The ray (x1, . . . , xn, 0) can be viewed as an additional ideal point as (x1, . . . , xn)
recedes to infinity in a certain direction. For example, in P2,

lim
T→0

(X/T, Y/T, 1) = lim
T→0

(X,Y, T ) = (X,Y, 0)

It is important to note that these are affine concepts.



4.5 Lines and conics in P2

• A line equation in R
2 is

a1x1 + a2x2 + a3 = 0

• Substituting by homogeneous coordinates xi = Xi/X3 we get a homogeneous linear
equation

(a1, a2, a3)· (X1, X2, X3) =
3∑

i=1

aiXi = 0, X ∈ P2

• A line in P2 is represented by a homogeneous 3-vector (a1, a2, a3).

• A point on a line:
a·X = 0 or aTX = 0 or XTa = 0

• Two points define a line:
l = p × q

• Two lines define a point:
x = l × m

• Matrix notation for cross products:
The cross product v × x can be represented as a matrix multiplication

v × x = [v]
×

x

where [v]
×

is a 3 × 3 antisymmetric matrix of rank 2:

[v]
×

=





0 −vz vy

vz 0 −vx

−vy vx 0





• The line at infinity (l∞): is the line of equation X3 = 0. Thus, the homogeneous
representation of l∞ is (0, 0, 1).

• The line (u1, u2, u3) intersects l∞ at the point (−u2, u1, 0).

• Points on l∞ are directions of affine lines in the embedded affine space (can be extended
to higher dimensions).

• Consider the standard hyperbola in the affine space given by equation xy = 1. To
transform to homogeneous coordinates, we substitute x = X/T and y = Y/T to obtain
XY = T 2. This is homogeneous in degree 2. Note that both (0, λ, 0) and (λ, 0, 0)
are solutions. The homogeneous hyperbola crosses the coordinate axes smoothly and
emerges from the other side. See the figure.



• A conic in affine space (inhomogeneous coordinates) is

ax2 + by2 + cxy + dx + ey + f = 0

Homogenizing this by replacements x = X1/X3 and y = Y1/Y3, we obtain

aX2
1 + bX2

2 + cX1X2 + dX1X3 + eX2X3 + fX2
3 = 0

which can be written in matrix notation as

XTCX = 0

where C is symmetric and is the homogeneous representation of a conic.

4.6 Planes and lines in P3

The duality that exist between points and lines in P2 exist between points and planes in P3.
Thus a plane is defined as a 4-tuple (u1, u2, u3, u4) and the equation of this plane is given as

4∑

i=1

uixi = 0

Analogous to the line at infinity (l∞) in P2 we have the plane at infinity (π∞) in P3 whose
representation is (0, 0, 0, 1)T .

4.6.1 Lines is P3: Plücker coordinates

4.7 Projective basis

Projective basis: A projective basis for Pn is any set of n + 2 points no n + 1 of which
are linearly dependent.



Canonical basis:
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Change of basis: Let e1, e2, . . . , en+1, en+2 be the standard basis and a1, a2, . . . , an+1, an+2

be any other basis. There exists a non-singular transformation [T](n+1)×(n+1) such that:

Tei = λiai,∀i = 1, 2. . . . , n + 2

T is unique up to a scale.

Proof:

From the first n + 1 equations we have that T must be of the form

T =
[

λ1a1 λ2a2 . . . λn+1an+1

]

T is non-singular by the linear independence of a’s.

The final equation gives us:

[
λ1a1 λ2a2 . . . λn+1an+1

]
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= λn+2an+2

which is equivalent to:

[
a1 a2 . . . an+1

]
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= λn+2an+2

Since the matrix on the left hand side of the above equation is of full rank (by linear
independence of x’s), the ratios of the λi are uniquely determined and no λi is 0.

4.8 Collineations

The invertible transformation T : Pn → Pn is called a projective transformation or
collineation or homography or perspectivity and is completely determined by n + 2
point correspondences.
Properties:



4.8.1 Preserves straight lines and cross ratios

Given four collinear points A1, A2,A3 and A4, their cross ratio is defined as

A1A3 A2A4

A1A4 A2A3

if A4 is a point at infinity the the cross ratio is given as

A1A3

A2A3

The cross ratio is independent of the choice of the projective coordinate system.

4.8.2 Illustration of perspectivity



4.8.3 Projective mappings of lines and conics in P2

lines: Let xi be a set of points on a line l and consider the action of a 3 × 3 projective
transformation H on the the points. Since the points lie on the line we have

lTxi = 0

One can easily verify that
lTH−1Hxi = 0

Thus the points Hxi all lie on the line H−T l. Hence, if points are transformed as
x′

i = Hxi, lines are transformed as l′ = H−T l.

conics: Note that a conic is represented (homogeneously) as

xTCx = 0

Under a point transformation x′ = Hx the conic becomes

xTCx = x′T [H−1]TCH−1x′ = x′TH−TCH−1x′ = 0

which is the quadratic form of x′TC′x′ with C′ = H−TCH−1. This gives the transformation
rule for a conic.

4.8.4 The affine subgroup

In an affine space An an affine transformation defines a correspondence X ↔ X′ given
by:

X′ = AX + b

where X, X′ and b are n-vectors, and A is an n × n matrix.
Clearly this is a subgroup of the projective group. Its projective representation is

T =

[
C c

0T
n t33

]

where A = 1
t33

C and b = 1
t33

c.
The affine subgroup preserves the hyperplane at infinity.

4.8.5 The Euclidean subgroup

• The affine subgroup can be further specialized by the requirement they leave a special
conic invariant. The conic Ω∞ is intersection of the quadric of equation:

n+1∑

i=1

x2
i = xn+1 = 0 with π∞

In a metric frame π∞ = (0, 0, 0, 1)T , and points on Ω∞ satisfy

X2
1 + X2

2 + X3
3

X4

}

= 0



• Ω∞ is called the absolute conic. In π∞, it can be interpreted as a circle of radius
i =

√
−1.

• For directions on π∞ (with X4 = 0), the absolute conic Ω∞ can be expressed as

(X1, X2, X3)I(X1, X2, X3)
T = 0

• The absolute conic, Ω∞, is fixed under a projective transformation H if and

only if H is an Euclidean transformation.

Proof: Since the absolute conic lies on π∞, a transformation fixing it must also fix
π∞, hence it must be affine. Such a transformation is of the form

HA =

[
A t

0T 1

]

Restricting to π∞, the absolute conic is represented by the matrix I3×3, and since it is
fixed by HA, one has (up to scale)

A−T IA−1 = I

which yields AAT = I. This means that A is orthogonal, hence a scaled rotation. 2

4.8.6 How to compute a homography

We are given 2D to 2D point correspondences xi ↔ x′

i
(these are points in P2 and hence are

homogeneous vectors of size 3 × 1), and we have to find the homography H (3 × 3 matrix)
such that x′

i
= Hxi.

Note that x′

i
and Hxi are not numerically equal and they can differ by a scale factor.

However, they have the same direction, and, hence x′

i
× Hxi = 0.

Writing the jth row of H as hjT
, we have
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Since hjT
xi = xi

Thj, the system of equations x′

i
× Hxi = 0 can be written in terms of the

unknowns (the entries of H) as:
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These equations have the form Aih = 0 where Ai is a 3 × 9 matrix and h is a 9 × 1 vector
(the entries of H). Note that Ai has rank of 2 (third row is obtained, up to a scale, by a
sum of x′

i times the first row and y′

i times the second), and, consequently, for each point
correspondence we have really only two equations. We may choose to work with only the
first two, but it doesn’t harm to keep all three. It may be useful to keep all three equations
because if w′

i = 0 (a point at infinity), then the first two collapse to a single equation.
Stacking up the equations for i = 1, 2, 3, 4 (four points) we have Ah = 0 where A is a

12× 9 matrix whose rank is 8 (of-course, you will not choose four points such that any three
are collinear). Consequently A has a 1-dimensional null space which provides a solution for
h. Such a solution can only be determined up to a non-zero scale factor, which suits you
fine because H is anyway defined only up to a scale! A scale may be arbitrarily chosen for
h by insisting that ‖h‖ = 1.

One can, of-course, stack up more equations by taking more point correspondences. The
resulting over-determined system Ah = 0 may not have a solution at all (inconsistent mea-
surements?). We can still find a least-squares solution: minimize ‖Ah‖ subject to ‖h‖ = 1.

In either case h is given by the last column of V where A = UΣVT is the singular value
decomposition (SVD) of A.

5 Camera models

A Camera transforms a 3D scene point X = (X,Y, Z)T into an image point x = (x, y)T .

The Projective Camera

The most general mapping from P3 to P2 is
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where (x1, x2, x3)
T and (X1, X2, X3, X4)

T are homogeneous coordinates related to x and X

by
(x, y) = (x1/x3, x1/x3)

(X,Y, Z) = (X1/X4, X2/X4, X3/X4)

The transformation matrix T = [Tij] has 11 degrees of freedom since only the ratios of
elements Tij are important.

The Perspective Camera

A special case of the projective camera is the perspective (or central) projection, reducing
to the familiar pin-hole camera when the leftmost 3×3 sub-matrix of T is a rotation matrix



with its third row scaled by the inverse focal length 1/f . The simplest form is:

Tp =





1 0 0 0
0 1 0 0
0 0 1/f 0





which gives the familiar equations
[

x
y

]

=
f

Z

[
X
Y

]

Each point is scaled by its individual depth, and all projection rays converge to the optic
center.

The Affine Camera

The affine camera is a special case of the projective camera and is obtained by constraining
the matrix T such that T31 = T32 = T33 = 0, thereby reducing the degrees of freedom from
11 to 8:
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In terms of image and scene coordinates, the mapping takes the form

x = MX + t

where M is a general 2× 3 matrix with elements Mij = Tij/T34 while t is a general 2-vector
representing the image center.

The affine camera preserves parallelism.

The Weak-Perspective Camera

The affine camera becomes a weak-perspective camera when the rows of M form a uniformly
scaled rotation matrix. The simplest form is

Twp =





1 0 0 0
0 1 0 0
0 0 0 Zave/f





yielding,

Mwp =
f

Zave

[
1 0 0
0 1 0

]

and

[
x
y

]

=
f

Zave

[
X
Y

]

This is simply the perspective equation with individual point depths Zi replaced by an
average constant depth Zave

The weak-perspective model is valid when the average variation of the depth of the object
(∆Z) along the line of sight is small compared to the Zave and the field of view is small. We
see this as follows.



Expanding the perspective projection equation using a Taylor series, we obtain

x =
f

Zave + ∆Z

[
X
Y

]

=
f

Zave

(

1 − ∆Z

Zave

+

(
∆Z

Zave

)2

− . . .

)[
X
Y

]

When |∆Z| << Zave only the zero-order term remains giving the weak-perspective projec-
tion. The error in image position is then xerr = xp − xwp:

xerr = − f

Zave

(
∆Z

Zave + ∆Z

)[
X
Y

]

showing that a small focal length (f), small field of view (X/Zave and (Y/Zave) and small
depth variation (∆Z) contribute to the validity of the model.

The orthographic camera

The affine camera reduces to the case of orthographic (parallel) projection when M represents
the first two rows of a rotation matrix. The simplest form is

Torth =





1 0 0 0
0 1 0 0
0 0 0 1





yielding,

Morth =

[
1 0 0
0 1 0

]

and

[
x
y

]

=

[
X
Y

]

6 Anatomy of a projective camera

6.1 The optical center

• The projective camera P̃ has a rank 3 whereas it has 4 columns. Clearly, it has a on
dimensional right null space. Suppose the null space is generated by the 4-vector C,
that is

P̃C = 0

• Claim: C is the optical center of the camera P̃.

Proof: Consider the line containing C and any other point A in 3-space. Points on
this line can be represented as

X(λ) = λA + (1 − λ)C

Under, the mapping x = P̃X, points on this line are projected to

x = P̃X(λ) = λP̃A + (1 − λ)P̃C = λP̃A

since P̃C = 0. Since every point on the line are mapped on to the same image point,
the line must be a ray through the camera center. It follows that C is the camera
center because for all choices of A the line passes through the optical center. 2
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Figure 1: 1D image formation with image plane at Z = f . Xp, Xwp and Xorth are the
perspective, weak-perspective and orthographic projections respectively.

• Writing
P̃ = [P | −Pt]

where P is 3 × 3 non-singular we have that t is the optical center.

[P | −Pt]

[
t

1

]

= 0

• An image point x defines a line λP−1x + t in 3-space:

X =







X
Y
Z
1







= λ







P−1





x
y
1





0




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

+







tx
ty
tz
1







Clearly all points X project to x under x = P̃X.



6.2 The column vectors of the camera matrix

p
1

p
2

p
3

Y
O

X

Z

C

Let the columns of a projective camera P̃ be pi for i = 1, . . . , 4. pi’s have geometric
interpretations as special image points.

p1,p2,p3 are the vanishing points of the world coordinates axes X, Y and Z respectively.
For example, the X-axis has direction D = (1, 0, 0, 0)T , which is imaged as

p1 = P̃D

The column p4 is the image of the world origin (0, 0, 0, 1)T .

6.3 The row vectors of the camera matrix

xyP 3

P
xy

2

principal plane

The row vectors of the projective camera are 4-vectors which have the geometric interpreta-
tions as particular world planes. Let us write the rows of the projective camera as πT

1 , πT
2

and πT
3 . That is

P̃ =





πT
1

πT
2

πT
3





6.3.1 The focal plane:

The focal plane is the plane parallel to the image plane containing the optical center. It is
the plane of equation

πT
3 X = 0

Points on this plane project on to image points (x, y, 0), i.e., points at infinity on the image
plane.



6.3.2 The axes planes:

Consider points on the plane πT
1 . This set satisfies

πT
1 X = 0

and, hence, points on this plane project on to image points (0, y, w), which are points on the
image y-axis. It also follows from P̃C = 0 that C also lies on πT

1 . Hence πT
1 is the plane

defined by the optical center and the y-axis in the image plane.
Similarly, πT

2 is the plane defined by the optical center and the x-axis in the image plane.
Thus unlike πT

3 , πT
1 and πT

2 are dependent on the choice of the coordinate system on the
image plane. In particular, the intersection of these two planes is the line joining the optical
center with the coordinate origin in the image plane. This line will not, in general, coincide
with the principal axis defined below.

6.4 The Principal axis and the principal point

The principal axis is the line passing through the the camera center C perpendicular to the
focal plane. It pierces the image plane at the principal point.

6.5 Pin-hole camera revisited

There are three coordinate systems involved - camera, image and the world:

1. Camera: perspective projection.





xc

yc

f



 = k





Xc

Yc

Zc







where k = f/Zc. This can be written as





xc

yc

f



 =





1 0 0 0
0 1 0 0
0 0 1 0











Xc

Yc

Zc

1







2. Image: (intrinsic/internal camera parameters)

kuxc = u − u0

kvyc = v0 − v

where the unit of k’s are pixel/length. This can be expressed as





u
v
1



 =





fku 0 0
0 −fkv 0
0 0 1









xc

yc

f



 = C
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

xc

yc

f





C is called the camera calibration matrix and it provides the transformation be-
tween an image point and a ray in Euclidean 3-space.

3. World: (extrinsic/external camera parameters)



The Euclidean transformation between the camera and world coordinates is:

Xc = RXw + T

and is expressed projectively as:






Xc

Yc

Zc

1





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=

[
R T

0T
3 1

]
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1
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Finally, concatenating the three matrices, we have
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u
v
1



 = C [R | T]
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Yw

Zw

1
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
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which defines the 3 × 4 projection from Euclidean 3-space to an image:

x = PEX PE = C [R | T]

7 Camera calibration

• Classical methods of camera calibration use an calibration object:



• Projection of each point gives us two equations and there are 11 unknowns. 6 points in
general position are sufficient for calibration. More points facilitate robust estimation
using non-linear least squares.

• Real cameras often have radial distortion.



7.1 Tsai camera model and calibration

• f is the focal length of the camera

• k is the lens radial distortion coefficient

• (u0, v0) is the principal point and the center of radial lens distortion

• (Rx, Ry, Rz) are rotation angles for the transformation between the world and camera
coordinates

• (tx, ty, tz) are translation components for the transformation between the world and
camera coordinates

• 



Xi

Yi

Zi



 = R





Xw

Yw

Zw



 +





tx
ty
tz



 =





r11 r12 r13

r21 r22 r23

r31 r32 r33









Xw

Yw

Zw



 +





tx
ty
tz



 =

• xu
i = f Xi

Zi

and yu
i = f Yi

Zi

• xu
i = xd

i (1 + kr2) and yu
i = yd

i (1 + kr2) where r =
√

(xd
i )

2 + (yd
i )

2

• Finally, the pixel coordinates are

xi =
sxx

d
i

dx

+ u0andyi =
yd

i

dy

+ v0

The parameters of the Tsai model can be estimated either from

1. a coplanar set of world points (a planar calibration object), or

2. a non-coplanar set of world points



In the first case sx cannot be determined. In what follows we describe non-coplanar
calibration, which is a two stage process:

• Linear estimation of a subset of parameters.

• Nonlinear optimization with the linear estimates as initial guess.

7.1.1 Linear estimation of parameters

• Ignoring radial distortion (for the time being) and setting dx = dy = 1 (measuring f
in pixels), we have xd

i = xu
i and yd

i = yu
i .

• Then, combining equations we have

xi − u0

f
= sx

r11Xw + r12Yw + r13Zw + tx
r31Xw + r32Yw + r33Zw + tz

and
yi − u0

f
=

r21Xw + r22Yw + r23Zw + ty
r31Xw + r32Yw + r33Zw + tz

• Assuming (u0, v0) to be known (at the center of the image) and setting x′

i = xi − u0

and y′

i = yi − v0), we have
x′

i

f
= sx

Xi

Zi

and
y′

i

f
=

Yi

Zi

• Eliminating f we have

x′

i

y′

i

= sx

Xi

Yi

= sx

r11Xw + r12Yw + r13Zw + tx
r21Xw + r22Yw + r23Zw + ty

• Rearranging, we have

sx (r11Xw + r12Yw + r13Zw + tx) y′

i − (r21Xw + r22Yw + r23Zw + ty) x′

i = 0

or

(Xwy′

i)sxr11+(Ywy′

i)sxr12+(Zwy′

i)sxr13+y′

isxtx−(Xwx′

i)r21+(Ywx′

i)r22+(Zwx′

i)r23+x′

ity = 0

which is a linear homogeneous equation in the eight unknowns sxr11, sxr12, sxr13, r21,
r22, r23, sxtx and ty.

• The unknown scale factor can be fixed by setting ty = 1. Image correspondences of
seven points in general position are sufficient to solve for the remaining unknowns. Let
the solution be sxr

′

11, sxr
′

12, sxr
′

13, r′21, r′22, r′23, sxt
′

x and t′y = 1

• We can estimate the correct scale factor by noting that the two rows of the rotation
matrix are supposed to be normal, i.e.,

r2
11 + r2

12 + r2
13 = r2

21 + r2
22 + r2

23 = 1



• The scale factor c for the solution can then be determined from

c = 1/
√

(r′21)
2 + (r′22)

2 + (r′23)
2

and
c/sx = 1/

√

(sxr′11)
2 + (sxr′12)

2 + (sxr′13)
2

This also allows recovery of sx.

• In the above procedure we didn’t enforce orthogonality of the first two rows of R.
Given vectors r′

1
and r′

2
, we can find two orthogonal vectors r1 and r2 close to the

originals as follows:
r1 = r′

1
+ µr′

2
and r2 = r′

2
+ µr′

1

which gives
r1 · r2 = r′

1
· r′

2
+ µ(r′

1
· r′

1
+ r′

2
· r′

2
) + µ2r′

1
· r′

2
= 0

The solution of this quadratic in µ is numerically ill behaved because r′
1
· r′

2
will be

quite small. We can use the approximate solution

µ ≃ −(1/2)r′
1
· r′

2

since r′
1
· r′

1
and r′

2
· r′

2
are both near 1.

• r3 can then be recovered as r1 × r2.

• Once we have R we can estimate f and tz from the basic equations above. This will
require one more correspondence to be given.

• The above procedure may be problematic if ty is close to 0. In such a case the entire
experimental data may have to be first translated by a fixed amount.

7.1.2 Nonlinear optimization

Finally, using the linear estimates of R, T and f as a starting point one can solve for all the
parameters, including the radial lens distortion parameter k which was initialized to 0, by
minimizing the image distance

N∑

i=1

(xi − xp
i )

2 +
N∑

i=1

(yi − yp
i )

2

where (xi, yi) are the observed image points and (xp
i , y

p
i ) are the positions predicted by the

Tsai model. The nonlinear optimization (over all the parameters) can be carried out by an
iterative numerical technique like the Levenberg-Marquardt method.



7.2 Camera calibration and absolute conic

• Let C and R be the optical center and the retinal plane of a camera.

• Consider a rigid motion D of the camera from configuration (C,R) to (D(C),D(R)).

• Let ω1 and ω2 be the two images of Ω corresponding to the two configurations.

• Clearly ω1 = ω2 because Ω = D(Ω).

• Thus ω is determined by only the internal parameters.

• Consider the equation of Ω

X2 + Y 2 + Z2 = 0 = T = MTM

where MT = [X,Y, Z]

• Images x of points X of Ω satisfy the equation

x = [P | −Pt]







X
Y
Z
0







= PM

• Since MTM = 0, we have that the equation of ω is

xTP−1TP−1x = 0

• In terms of pixel coordinates this can be re-written as:

(
u − u0

fku

)2 + (
v − v0

fkv

)2 + 1 = 0

Thus, the image of the absolute conic are determined completely by the internal pa-
rameters.

7.3 What does calibration give?

• An image point x back projects to a ray defined by x and the camera center. Cali-

bration relates the image point to the ray’s direction.

• Suppose points on the ray are written as X̃ = λd in the camera Euclidean frame. Then
these points map to the point

x = C [I | 0] (λdT , ?)T

• Thus, C is the (affine) transformation between x and the ray’s direction d = C−1x

measured in the cameras Euclidean frame.



• The angle between two rays d1 and d2 corresponding to image points x1 and x2 may
be obtained as (by the cosine formula)

cos θ = d1
T
d2√

d1
T
d1

√
d2

T
d2

= (C−1x1)T (C−1x2)√
(C−1x1)T (C−1x1)

√
(C−1x2)T (C−1x2)

= x1
T (C−T C−1)x2√

x1
T (C−T C−1)x1

√
x2

T (C−T C−1)x2

• The above shows that if C is known (camera is calibrated), then the angle between
rays can be computed from their corresponding image points. A calibrated camera is
like a 2D protractor.

• An image line l defines a plane through the camera center with normal direction n =
CT l.

Proof: Points x on l back projects to directions d = C−1x which are orthogonal to
the plane normal. Hence, dTn = xTC−Tn = 0. Since points on l satisfy xT l = 0 we
have that l = C−Tn. 2

7.4 The image of the absolute conic

• Points on the plane at infinity (π∞), which may be written as X∞ = (dT , 0)T are
mapped to the image plane by a general camera P = CR [I | t] as

x = PX∞ = CR [I | t] (dT , 0)T = CRd

• Thus H = CR is the planar homography between π∞ and the image plane. Note that
the mapping is independent of the position (translation) of the camera and depends
only on the orientation. (An explanation as to why the images of stars stay fixed on
the retinae as we translate?)

• Since the absolute conic (Ω∞) is on π∞, we can compute its image as

ω = (CCT )−1 = C−TC−1

Proof: Note that under a point homography H which maps x to Hx, a conic A is
mapped to H−TAH−1. Hence Ω∞ = I on π∞ maps to

ω = (CR)−T I(CR)−1 = C−TRR−1C−1 = (CCT )−1 = C−TC−1

2

• Like Ω∞, ω is an imaginary point conic with no real points. It cannot really be observed
in an image. It is really an useful mathematical device.

• ω depends only on the internal parameters of the camera and is independent of the
cameras position or orientation.



• It follows from above that the angle between two rays is given by the simple equation

cos θ = x1
T (C−T C−1)x2√

x1
T (C−T C−1)x1

√
x2

T (C−T C−1)x2

= x1
T ωx2√

x1
T ωx1

√
x2

T ωx2

• The above expression is independent of the choice of the projective coordinate system
on the image. To see this consider any 2D projective transformation H. The points xi

are transformed to Hxi, and ω transforms (as any image conic) to H−T ωH−1. Hence
the expression for cos(θ) is unchanged.

• We may define the dual image of the absolute conic as

ω∗ = ω−1 = CCT

• Once ω (equivalently ω∗) is identified in an image C is uniquely determined; since a
symmetric matrix can be uniquely decomposed into an upper triangular matrix and
its transpose (ω∗ = CCT ) by Cholesky decomposition.

• An arbitrary plane π intersects π∞ in a line, and this line intersects Ω∞ in two points
(imaginary) which are circular points of π. The image of the circular points line on ω
at the points at which the vanishing lines of the plane π intersects ω.

7.5 A simple calibration device

The last two points above can be used to design a simple calibration device as follows. The
image of three squares on three different planes (not necessarily orthogonal) are sufficient to
give calibration. Consider the following steps:



1. For each square compute the homography H that maps its corner points, (0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T

to their imaged points.

2. Compute the imaged circular points for the plane of that square as H(1,±i, 0)T .

3. Fit a conic ω through the six imaged points. Note that five points are sufficient to
define a conic.

4. Compute C from ω = (CCT )−1 using Cholesky decomposition.

7.6 Vanishing points and vanishing lines

• Points on a line in 3 space through a point A and with direction D = (d, 0)T can be
written as X(λ) = A + λD. As λ varies from 0 to ∞, X(λ) varies from A to the the
point at infinity D.

• Under a projective camera P = C [I | 0] the points project as

x(λ) = PX(λ) = PA + λPD = a + λCd

where a is the image of A.

• The vanishing point of the line, v, is obtained as

v = lim
λ→∞

x(λ) = lim
λ→∞

a + λCd = Cd

or
v = PX∞ = C [I | 0] (dT , 0)T = Cd

Thus the vanishing point back projects to a ray with direction d.

• Parallel planes in 3 space intersects π∞ in a common line, and the image of this line is
the vanishing line of the plane. Thus, we have
The set of planes perpendicular to the direction n in the camera’s Euclidean frame have
vanishing line l = C−Tn.

7.6.1 Camera rotation from vanishing points

• Consider two images of a scene obtained by the same camera from different position
and orientation.

• The images of the points at infinity, the vanishing points, are not affected by the
camera translation, but are affected only by the camera rotation R.

• Consider a scene line with vanishing point vi in the first view and v′

i in the second.

• The vanishing point vi has a direction di in the first cameras Euclidean frame, and,
similarly, the vanishing point v′

i has a direction d′

i in the second cameras Euclidean
frame. We have

di = C−1vi/‖C−1vi‖
d′

i = C−1v′

i/‖C−1v′

i‖



• The directions are related by
d′

i = Rdi

which represents two independent constraints on R.

• Hence, the rotation matrix can be computed from two such corresponding directions
provided we know C.

7.6.2 Determining calibration from vanishing points and lines

• Let v1 and v2 be the vanishing points of two lines in the image. If θ is the angle
between the two scene lines, we have

cos θ = v1
T ωv2√

v1
T ωv1

√
v2

T ωv2

• If θ is known the above equation gives a quadratic constraint on the entries of ω.

• If it is known that the scene lines are orthogonal (θ = 90), then we have a linear
constraint

v1
T ωv2 = 0

Thus, given five pairs of perpendicular lines, one can solve for the entries of ω.

• The vanishing point v of the normal direction to a plane is obtained from the plane
vanishing line as

l = C−Tn = C−TC−1v = ωv

A common example is a vertical direction and a horizontal plane.

• Writing the above as l × ωv = 0 removes the homogeneous scaling factor and results
in three homogeneous equations linear in the entries of ω.

• Given a sufficient number of such constraints ω can be computed and C follows.

• The following can be verified by direct computation:

1. If s = C12 = 0 ( no skew) then ω12 = ω21 = 0.

2. If, in addition, αx = αy = C11 = C22 then ω11 = ω22

• Suppose it is known that the camera has zero skew and that the pixels are square (or
the aspect ratio is known) the ω and C can be computed from an orthogonal triad of
directions.



7.7 Zhang’s camera calibration

• Camera calibration from a single plane at few (at least three, two skew is ignored)
orientations.

• Without loss of generality, assume that the model plane is on Z = 0.

• Then, for points on the model plane

s
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u
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
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• Thus, a model point M and its image m are related by a homography H, where

sm = HM

with
H = C

[
r1 r2 t

]

• From
H =

[
h1 h2 h3

]
= λC

[
r1 r2 t

]

using the fact that r1 and r2 are orthonormal, we obtain the relationships

ht
1C

−tC−1h2 = 0
ht

1C
−tC−1h1 = ht

2C
−tC−1h2

• Each such homography provides two constraints on the camera intrinsics (image of
the absolute conic). Three independent orientations are sufficient to solve for camera
internals linearly. Two are sufficient if the skew is ignored.

• Once the camera internals matrix C is known, the externals can be readily obtained.

r1 = λC−1h1

r2 = λC−1h2

r3 = r1 × r2

t = λC−1h3

with λ = 1/||C−1h1|| = 1/||C−1h2||. Of course, the computed matrix R = [r1 r2 r3]
does not, in general, satisfy the properties of a rotation matrix. The orthonormality
properties can be enforced in manned similar to the one described in Tsai’s.

• The method can be extended to also obtain the radial lens distortion parameters.


