
CSL361 Problem set 9: Eigenvalue and SVD
Computation

April 17, 2017

1. (Shift) Show that if Ax = λx and σ is any scalar which is not an
eigenvalue of A, then (A − σI)x = (λ − σ)x. Thus the eigenvalues of
(A − σI) are shifted from those of A by σ and the eigenvectors are
unchanged.

2. (Inverse) Show that if A is nonsingular and Ax = λx with x 6= 0,
then λ is necessarily nonzero, and A−1x = (1/λ)x.

3. (Power) Show that if Ax = λx then A2x = λ2x. More generally, if k
is any positive integer, then Akx = λkx.

4. Given the Rayleigh quotient of a vector x ∈ Rm:

r(x) =
xtAX

xtx

show that the gradient of r(x) (vector of partial derivatives with re-
spect to coordinates xj) is given as

∇r(x) =
2

xtx
(Ax− r(x)x)

Conclude that at an eigenvector x of A, the gradient of r(x) is the zero
vector. Conversely, if ∇r(x) = 0 with x 6= 0, then x is an eigenvector
and r(x) is the corresponding eigenvalue.

5. Let qJ be an eigenvector of A. From the fact that ∇r(qJ) = 0 together
with smoothness of the function r(x) (everywhere except at the origin),
conclude that

r(x)− r(qJ) = O(‖x− qJ‖2) as x→ qJ
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6. Consider the power iteration:

v(0) = some vector with ‖v(0)‖ = 1
for k = 1, 2, . . .

w = Av(k−1)

v(k) = w/‖w‖
λ(k) = (v(k))tAv(k)

Suppose that |λ1| > |λ2| ≥ . . . |λm| and qt1v
(0) 6= 0. Show that the

iterates satisfy

‖v(k) − (±q1)‖ = O

(∣∣∣∣λ2λ1
∣∣∣∣k
)

and |λ(k) − λ1| = O

(∣∣∣∣λ2λ1
∣∣∣∣2k
)

as k →∞.

7. Consider the inverse iteration:

v(0) = some vector with ‖v(0)‖ = 1
for k = 1, 2, . . .

Solve (A− σI)w = v(k−1) for w

v(k) = w/‖w‖
λ(k) = (v(k))tAv(k)

Suppose λJ is the closest eigenvalue to σ and λK is the second closest,
that is, |σ − λJ | < |σ − λK | ≤ |σ − λj | for each j 6= J and qtJv

(0) 6= 0.
Then, show that the iterates of the inverse iteration satisfy

‖v(k)− (±qJ)‖ = O

(∣∣∣∣ σ − λJσ − λK

∣∣∣∣k
)

and |λ(k)− λJ | = O

(∣∣∣∣ σ − λJσ − λK

∣∣∣∣2k
)

as k →∞.

8. Consider the Rayleigh quotient iteration:

v(0) = some vector with ‖v(0)‖ = 1

λ(0) = (v(0))tAv(0)

for k = 1, 2, . . .

Solve (A− λ(k−1)I)w = v(k−1) for w

v(k) = w/‖w‖
λ(k) = (v(k))tAv(k)
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Suppose λJ is an eigenvalue A and v(0) is sufficiently close to qJ . Then,
argue that for almost all starting vectors the iterates of the Rayleigh
quotient iteration satisfy

‖v(k+1)−(±qJ)‖ = O(‖v(k)−(±qJ)‖3) and |λ(k+1)−λJ | = O(|λ(k)−λJ |3)

as k →∞.

9. (Deflation). Let H be any nonsingular matrix such that Hx = αe1, a
scalar multiple of the first column of the identity matrix (Householder
is a good choice for H). Show that the similarity transformation de-
termined by H transforms A to a block triangular form

HAH−1 =

[
λ1 bt

0 B

]
where B is a matrix of order m − 1 having eigenvalues λ2, . . . , λm.
Moreover if y2 is an eigenvector of B corresponding to λ2, then

x2 = H−1

[
α
y2

]
where α =

bty2
λ2 − λ1

is an eigenvector corresponding to λ2 for the original matrix A, pro-
vided λ1 6= λ2.

Conclude, that using deflation it is possible to determine all eigenvalues
and eigenvectors of a matrix with any variation of the power iteration.

10. Consider the following algorithm known as simultaneous iteration:

V (0) = some arbitrary m× n matrix of rank n
for k = 1, 2, . . .

V (k) = AV (k−1)

Q̂(k)R̂(k) = V (k)

Let S0 = span(V (0)) and let S be the invariant subspace spanned
by the eigenvectors x1, x2, . . . , xn of A corresponding to the n largest
eigenvalues. Suppose that no non-zero vector in S is orthogonal to S0.
Show that for any k > 0, the columns of V (k) form a basis for Sk =
AkS0, and, provided λn > λn+1, Sk converges to S (proof analogous
to power iteration). Hence the final Q̂(k) gives an orthogonal basis for
the invariant subspace.
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However, argue that the simultaneous iteration has the effect of carry-
ing out power iteration of each column of V (0) and hence each column
tends to converge to a multiple of the dominant eigenvector of A.
Hence, the columns of V (k) form an increasingly ill-conditioned basis
for Sk.

11. A remedy to the above is known as orthogonal iteration:

V (0) = some arbitrary m× n matrix of rank n
for k = 1, 2, . . .

Q̂(k)R̂(k) = V (k−1) (reduced QR factorization)

V (k) = AQ̂(k)

where instead of orthogonalizing at the end, we orthogonalize at every
iteration.

Argue that that the matrices V (k) produced by the orthogonal version
of simultaneous iteration converge to anm×nmatrix V whose columns
form a basis for same invariant subspace. Also, because span(Q̂(k)) =
span(V (k−1)), the matrices Q̂(k) converge to an orthonormal basis for
the same subspace.

Also, we know that there exists an n×n matrix B such that AQ̂ = Q̂B.
Argue that for any j, 1 ≤ j ≤ n, the first j columns of Q̂ (or V ) are the
same as if the iteration has been carried out on the first j columns of
A, and the remaining n− j columns of Q̂ can be expanded into a basis
for the complementary subspace. Thus, if λj > λj+1 for j = 1, . . . , n,
then B must be triangular. Conclude that simultaneous orthogonal
iterations lead to a Schur decomposition of A.

12. Consider the following iterations

(a) Simultaneous orthogonal iteration

Q(0) = I

for k = 1, 2, . . .

Z = AQ(k−1)

Q(k)R(k) = Z (QR factorization)

A(k) = (Q(k))tAQ(k)

(b) Unshifted QR iteration
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A(0) = A
for k = 1, 2, . . .

Q(k)R(k) = A(k−1) (QR factorization)

A(k) = R(k)Q(k)

Q(k) = Q(1)Q(2) . . . Q(k)

Additionally, for both algorithms, let

R(k) = R(k)R(k−1) . . . R(1)

Show, by induction on k, that both generate identical sequences of
matrices R(k), Q(k) and A(k), namely, those defined by the QR factor-

ization of the kth power of A,

Ak = Q(k)R(k)

together with the projection

A(k) = (Q(k))tAQ(k)

13.

14. Using all of the above convince yourself of the rationale behind the
practical QR algorithm

(Q(0))tA(0)Q(0) = A (Hessenberg reduction)
for k = 1, 2, . . .

Pick a shift µ(k) (e.g., choose µ(k) = A
(k−1)
mm )

Q(k)R(k) = A(k−1) − µ(k)I (QR factorization)

A(k) = R(k)Q(k) + µ(k)I (re-combine factors in reverse order)

If any sub-diagonal entry in A(k) is sufficiently close to zer, set it to zero to obtain

A(k) =

[
A11 A12

0 A22

]
(deflation)

and apply the QR algorithm to A11 and A22
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