CSL361 Problem set 9: Eigenvalue and SVD Computation

April 17, 2017

1. (Shift) Show that if $A x=\lambda x$ and σ is any scalar which is not an eigenvalue of A, then $(A-\sigma I) x=(\lambda-\sigma) x$. Thus the eigenvalues of $(A-\sigma I)$ are shifted from those of A by σ and the eigenvectors are unchanged.
2. (Inverse) Show that if A is nonsingular and $A x=\lambda x$ with $x \neq 0$, then λ is necessarily nonzero, and $A^{-1} x=(1 / \lambda) x$.
3. (Power) Show that if $A x=\lambda x$ then $A^{2} x=\lambda^{2} x$. More generally, if k is any positive integer, then $A^{k} x=\lambda^{k} x$.
4. Given the Rayleigh quotient of a vector $x \in \mathbb{R}^{m}$:

$$
r(x)=\frac{x^{t} A X}{x^{t} x}
$$

show that the gradient of $r(x)$ (vector of partial derivatives with respect to coordinates x_{j}) is given as

$$
\nabla r(x)=\frac{2}{x^{t} x}(A x-r(x) x)
$$

Conclude that at an eigenvector x of A, the gradient of $r(x)$ is the zero vector. Conversely, if $\nabla r(x)=0$ with $x \neq 0$, then x is an eigenvector and $r(x)$ is the corresponding eigenvalue.
5. Let q_{J} be an eigenvector of A. From the fact that $\nabla r\left(q_{J}\right)=0$ together with smoothness of the function $r(x)$ (everywhere except at the origin), conclude that

$$
r(x)-r\left(q_{J}\right)=O\left(\left\|x-q_{J}\right\|^{2}\right) \text { as } x \rightarrow q_{J}
$$

6. Consider the power iteration:
$v^{(0)}=$ some vector with $\left\|v^{(0)}\right\|=1$
for $k=1,2, \ldots$.

$$
w=A v^{(k-1)}
$$

$$
v^{(k)}=w /\|w\|
$$

$$
\lambda^{(k)}=\left(v^{(k)}\right)^{t} A v^{(k)}
$$

Suppose that $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots\left|\lambda_{m}\right|$ and $q_{1}^{t} v^{(0)} \neq 0$. Show that the iterates satisfy

$$
\left\|v^{(k)}-\left(\pm q_{1}\right)\right\|=O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right) \text { and }\left|\lambda^{(k)}-\lambda_{1}\right|=O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{2 k}\right)
$$

as $k \rightarrow \infty$.
7. Consider the inverse iteration:
$v^{(0)}=$ some vector with $\left\|v^{(0)}\right\|=1$
for $k=1,2, \ldots$
Solve $(A-\sigma I) w=v^{(k-1)}$ for w
$v^{(k)}=w /\|w\|$
$\lambda^{(k)}=\left(v^{(k)}\right)^{t} A v^{(k)}$
Suppose λ_{J} is the closest eigenvalue to σ and λ_{K} is the second closest, that is, $\left|\sigma-\lambda_{J}\right|<\left|\sigma-\lambda_{K}\right| \leq\left|\sigma-\lambda_{j}\right|$ for each $j \neq J$ and $q_{J}^{t} v^{(0)} \neq 0$. Then, show that the iterates of the inverse iteration satisfy
$\left\|v^{(k)}-\left(\pm q_{J}\right)\right\|=O\left(\left|\frac{\sigma-\lambda_{J}}{\sigma-\lambda_{K}}\right|^{k}\right)$ and $\left|\lambda^{(k)}-\lambda_{J}\right|=O\left(\left|\frac{\sigma-\lambda_{J}}{\sigma-\lambda_{K}}\right|^{2 k}\right)$
as $k \rightarrow \infty$.
8. Consider the Rayleigh quotient iteration:
$v^{(0)}=$ some vector with $\left\|v^{(0)}\right\|=1$
$\lambda^{(0)}=\left(v^{(0)}\right)^{t} A v^{(0)}$
for $k=1,2, \ldots$

$$
\begin{aligned}
& \text { Solve }\left(A-\lambda^{(k-1)} I\right) w=v^{(k-1)} \text { for } w \\
& v^{(k)}=w /\|w\| \\
& \lambda^{(k)}=\left(v^{(k)}\right)^{t} A v^{(k)}
\end{aligned}
$$

Suppose λ_{J} is an eigenvalue A and $v^{(0)}$ is sufficiently close to q_{J}. Then, argue that for almost all starting vectors the iterates of the Rayleigh quotient iteration satisfy
$\left\|v^{(k+1)}-\left(\pm q_{J}\right)\right\|=O\left(\left\|v^{(k)}-\left(\pm q_{J}\right)\right\|^{3}\right)$ and $\left|\lambda^{(k+1)}-\lambda_{J}\right|=O\left(\left|\lambda^{(k)}-\lambda_{J}\right|^{3}\right)$
as $k \rightarrow \infty$.
9. (Deflation). Let H be any nonsingular matrix such that $H x=\alpha e_{1}$, a scalar multiple of the first column of the identity matrix (Householder is a good choice for H). Show that the similarity transformation determined by H transforms A to a block triangular form

$$
H A H^{-1}=\left[\begin{array}{cc}
\lambda_{1} & b^{t} \\
0 & B
\end{array}\right]
$$

where B is a matrix of order $m-1$ having eigenvalues $\lambda_{2}, \ldots, \lambda_{m}$. Moreover if y_{2} is an eigenvector of B corresponding to λ_{2}, then

$$
x_{2}=H^{-1}\left[\begin{array}{c}
\alpha \\
y_{2}
\end{array}\right] \text { where } \alpha=\frac{b^{t} y_{2}}{\lambda_{2}-\lambda_{1}}
$$

is an eigenvector corresponding to λ_{2} for the original matrix A, provided $\lambda_{1} \neq \lambda_{2}$.

Conclude, that using deflation it is possible to determine all eigenvalues and eigenvectors of a matrix with any variation of the power iteration.
10. Consider the following algorithm known as simultaneous iteration:
$V^{(0)}=$ some arbitrary $m \times n$ matrix of rank n
for $k=1,2, \ldots$

$$
V^{(k)}=A V^{(k-1)}
$$

$\hat{Q}^{(k)} \hat{R}^{(k)}=V^{(k)}$
Let $S_{0}=\operatorname{span}\left(V^{(0)}\right)$ and let S be the invariant subspace spanned by the eigenvectors $x_{1}, x_{2}, \ldots, x_{n}$ of A corresponding to the n largest eigenvalues. Suppose that no non-zero vector in S is orthogonal to S_{0}. Show that for any $k>0$, the columns of $V^{(k)}$ form a basis for $S_{k}=$ $A^{k} S_{0}$, and, provided $\lambda_{n}>\lambda_{n+1}, S_{k}$ converges to S (proof analogous to power iteration). Hence the final $\hat{Q}^{(k)}$ gives an orthogonal basis for the invariant subspace.

However, argue that the simultaneous iteration has the effect of carrying out power iteration of each column of $V^{(0)}$ and hence each column tends to converge to a multiple of the dominant eigenvector of A. Hence, the columns of $V^{(k)}$ form an increasingly ill-conditioned basis for S_{k}.
11. A remedy to the above is known as orthogonal iteration:

$$
\begin{aligned}
& V^{(0)}=\text { some arbitrary } m \times n \text { matrix of rank } n \\
& \text { for } k=1,2, \ldots \\
& \quad \hat{Q}^{(k)} \hat{R}^{(k)}=V^{(k-1)} \text { (reduced } Q R \text { factorization) } \\
& \quad V^{(k)}=A \hat{Q}^{(k)}
\end{aligned}
$$

where instead of orthogonalizing at the end, we orthogonalize at every iteration.
Argue that that the matrices $V^{(k)}$ produced by the orthogonal version of simultaneous iteration converge to an $m \times n$ matrix V whose columns form a basis for same invariant subspace. Also, because $\operatorname{span}\left(\hat{Q}^{(k)}\right)=$ $\operatorname{span}\left(V^{(k-1)}\right)$, the matrices $\hat{Q}^{(k)}$ converge to an orthonormal basis for the same subspace.
Also, we know that there exists an $n \times n$ matrix B such that $A \hat{Q}=\hat{Q} B$. Argue that for any $j, 1 \leq j \leq n$, the first j columns of \hat{Q} (or V) are the same as if the iteration has been carried out on the first j columns of A, and the remaining $n-j$ columns of \hat{Q} can be expanded into a basis for the complementary subspace. Thus, if $\lambda_{j}>\lambda_{j+1}$ for $j=1, \ldots, n$, then B must be triangular. Conclude that simultaneous orthogonal iterations lead to a Schur decomposition of A.
12. Consider the following iterations
(a) Simultaneous orthogonal iteration

$$
\begin{aligned}
& \frac{Q^{(0)}}{\text { for }} k=I \\
& \quad Z=A, 2, \ldots \\
& \left.\quad \begin{array}{l}
Q^{(k)} R^{(k-1)} \\
A^{(k)}= \\
\quad\left(\underline{Q}^{(k)}\right)^{t} A \underline{Q}^{(k)}
\end{array} \text { (QR factorization }\right)
\end{aligned}
$$

(b) Unshifted $Q R$ iteration

$$
\begin{aligned}
& A^{(0)}=A \\
& \text { for } k=1,2, \ldots \\
& \quad Q^{(k)} R^{(k)}=A^{(k-1)}(Q R \text { factorization }) \\
& \quad A^{(k)}=R^{(k)} Q^{(k)} \\
& \quad \underline{Q}^{(k)}=Q^{(1)} Q^{(2)} \ldots Q^{(k)}
\end{aligned}
$$

Additionally, for both algorithms, let

$$
\underline{R}^{(k)}=R^{(k)} R^{(k-1)} \ldots R^{(1)}
$$

Show, by induction on k, that both generate identical sequences of matrices $\underline{R}^{(k)}, \underline{Q}^{(k)}$ and $A^{(k)}$, namely, those defined by the $Q R$ factorization of the $\overline{k^{t h}}$ power of A,

$$
A^{k}=\underline{Q}^{(k)} \underline{R}^{(k)}
$$

together with the projection

$$
A^{(k)}=\left(\underline{Q}^{(k)}\right)^{t} A \underline{Q}^{(k)}
$$

13.
14. Using all of the above convince yourself of the rationale behind the practical $Q R$ algorithm
$\left(Q^{(0)}\right)^{t} A^{(0)} Q^{(0)}=A$ (Hessenberg reduction)
for $k=1,2, \ldots$
Pick a shift $\mu^{(k)}$ (e.g., choose $\left.\mu^{(k)}=A_{m m}^{(k-1)}\right)$
$Q^{(k)} R^{(k)}=A^{(k-1)}-\mu^{(k)} I(Q R$ factorization)
$A^{(k)}=R^{(k)} Q^{(k)}+\mu^{(k)} I$ (re-combine factors in reverse order)
If any sub-diagonal entry in $A^{(k)}$ is sufficiently close to zer, set it to zero to obtain $A^{(k)}=\left[\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right]$ (deflation)
and apply the $Q R$ algorithm to A_{11} and A_{22}
