CSL361 Problem set 9: Eigenvalue and SVD Computation

April 17, 2017

- 1. (Shift) Show that if $Ax = \lambda x$ and σ is any scalar which is not an eigenvalue of A, then $(A \sigma I)x = (\lambda \sigma)x$. Thus the eigenvalues of $(A \sigma I)$ are *shifted* from those of A by σ and the eigenvectors are unchanged.
- 2. (Inverse) Show that if A is nonsingular and $Ax = \lambda x$ with $x \neq 0$, then λ is necessarily nonzero, and $A^{-1}x = (1/\lambda)x$.
- 3. (**Power**) Show that if $Ax = \lambda x$ then $A^2x = \lambda^2 x$. More generally, if k is any positive integer, then $A^k x = \lambda^k x$.
- 4. Given the Rayleigh quotient of a vector $x \in \mathbb{R}^m$:

$$r(x) = \frac{x^t A X}{x^t x}$$

show that the gradient of r(x) (vector of partial derivatives with respect to coordinates x_i) is given as

$$\nabla r(x) = \frac{2}{x^t x} (Ax - r(x)x)$$

Conclude that at an eigenvector x of A, the gradient of r(x) is the zero vector. Conversely, if $\nabla r(x) = 0$ with $x \neq 0$, then x is an eigenvector and r(x) is the corresponding eigenvalue.

5. Let q_J be an eigenvector of A. From the fact that $\nabla r(q_J) = 0$ together with smoothness of the function r(x) (everywhere except at the origin), conclude that

$$r(x) - r(q_J) = O(||x - q_J||^2)$$
 as $x \to q_J$

6. Consider the *power* iteration:

$$v^{(0)} = \text{some vector with } ||v^{(0)}|| = 1$$

for $k = 1, 2, ...$
 $w = Av^{(k-1)}$
 $v^{(k)} = w/||w||$
 $\lambda^{(k)} = (v^{(k)})^t Av^{(k)}$

Suppose that $|\lambda_1| > |\lambda_2| \ge \dots |\lambda_m|$ and $q_1^t v^{(0)} \ne 0$. Show that the iterates satisfy

$$\|v^{(k)} - (\pm q_1)\| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right) \text{ and } |\lambda^{(k)} - \lambda_1| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right)$$

as $k \to \infty$.

7. Consider the *inverse* iteration:

$$v^{(0)} = \text{some vector with } ||v^{(0)}|| = 1$$

for $k = 1, 2, \dots$
Solve $(A - \sigma I)w = v^{(k-1)}$ for w
 $v^{(k)} = w/||w||$
 $\lambda^{(k)} = (v^{(k)})^t A v^{(k)}$

Suppose λ_J is the closest eigenvalue to σ and λ_K is the second closest, that is, $|\sigma - \lambda_J| < |\sigma - \lambda_K| \le |\sigma - \lambda_j|$ for each $j \ne J$ and $q_J^t v^{(0)} \ne 0$. Then, show that the iterates of the inverse iteration satisfy

$$\|v^{(k)} - (\pm q_J)\| = O\left(\left|\frac{\sigma - \lambda_J}{\sigma - \lambda_K}\right|^k\right) \text{ and } |\lambda^{(k)} - \lambda_J| = O\left(\left|\frac{\sigma - \lambda_J}{\sigma - \lambda_K}\right|^{2k}\right)$$

as $k \to \infty$.

8. Consider the Rayleigh quotient iteration:

$$v^{(0)} = \text{some vector with } ||v^{(0)}|| = 1$$

$$\lambda^{(0)} = (v^{(0)})^t A v^{(0)}$$

for $k = 1, 2, ...$
Solve $(A - \lambda^{(k-1)}I)w = v^{(k-1)}$ for w
 $v^{(k)} = w/||w||$
 $\lambda^{(k)} = (v^{(k)})^t A v^{(k)}$

Suppose λ_J is an eigenvalue A and $v^{(0)}$ is sufficiently close to q_J . Then, argue that for almost all starting vectors the iterates of the *Rayleigh quotient* iteration satisfy

$$|v^{(k+1)} - (\pm q_J)|| = O(||v^{(k)} - (\pm q_J)||^3)$$
 and $|\lambda^{(k+1)} - \lambda_J| = O(|\lambda^{(k)} - \lambda_J|^3)$

as $k \to \infty$.

9. (Deflation). Let H be any nonsingular matrix such that $Hx = \alpha e_1$, a scalar multiple of the first column of the identity matrix (*Householder* is a good choice for H). Show that the similarity transformation determined by H transforms A to a block triangular form

$$HAH^{-1} = \left[\begin{array}{cc} \lambda_1 & b^t \\ 0 & B \end{array} \right]$$

where B is a matrix of order m-1 having eigenvalues $\lambda_2, \ldots, \lambda_m$. Moreover if y_2 is an eigenvector of B corresponding to λ_2 , then

$$x_2 = H^{-1} \begin{bmatrix} \alpha \\ y_2 \end{bmatrix}$$
 where $\alpha = \frac{b^t y_2}{\lambda_2 - \lambda_1}$

is an eigenvector corresponding to λ_2 for the original matrix A, provided $\lambda_1 \neq \lambda_2$.

Conclude, that using deflation it is possible to determine all eigenvalues and eigenvectors of a matrix with any variation of the power iteration.

10. Consider the following algorithm known as simultaneous iteration:

$$\begin{split} V^{(0)} &= \text{some arbitrary } m \times n \text{ matrix of rank } n \\ \text{for } k &= 1, 2, \dots \\ V^{(k)} &= AV^{(k-1)} \\ \hat{Q}^{(k)} \hat{R}^{(k)} &= V^{(k)} \end{split}$$

Let $S_0 = \operatorname{span}(V^{(0)})$ and let S be the invariant subspace spanned by the eigenvectors x_1, x_2, \ldots, x_n of A corresponding to the n largest eigenvalues. Suppose that no non-zero vector in S is orthogonal to S_0 . Show that for any k > 0, the columns of $V^{(k)}$ form a basis for $S_k = A^k S_0$, and, provided $\lambda_n > \lambda_{n+1}$, S_k converges to S (proof analogous to *power iteration*). Hence the final $\hat{Q}^{(k)}$ gives an orthogonal basis for the invariant subspace. However, argue that the simultaneous iteration has the effect of carrying out power iteration of each column of $V^{(0)}$ and hence each column tends to converge to a multiple of the dominant eigenvector of A. Hence, the columns of $V^{(k)}$ form an increasingly ill-conditioned basis for S_k .

11. A remedy to the above is known as orthogonal iteration:

 $V^{(0)} = \text{some arbitrary } m \times n \text{ matrix of rank } n$ for k = 1, 2, ... $\hat{Q}^{(k)} \hat{R}^{(k)} = V^{(k-1)}$ (reduced QR factorization) $V^{(k)} = A\hat{Q}^{(k)}$

where instead of orthogonalizing at the end, we orthogonalize at every iteration.

Argue that the matrices $V^{(k)}$ produced by the orthogonal version of simultaneous iteration converge to an $m \times n$ matrix V whose columns form a basis for same invariant subspace. Also, because $\operatorname{span}(\hat{Q}^{(k)}) =$ $\operatorname{span}(V^{(k-1)})$, the matrices $\hat{Q}^{(k)}$ converge to an orthonormal basis for the same subspace.

Also, we know that there exists an $n \times n$ matrix B such that $A\hat{Q} = \hat{Q}B$. Argue that for any $j, 1 \leq j \leq n$, the first j columns of \hat{Q} (or V) are the same as if the iteration has been carried out on the first j columns of A, and the remaining n-j columns of \hat{Q} can be expanded into a basis for the complementary subspace. Thus, if $\lambda_j > \lambda_{j+1}$ for $j = 1, \ldots, n$, then B must be triangular. Conclude that simultaneous orthogonal iterations lead to a *Schur decomposition* of A.

- 12. Consider the following iterations
 - (a) Simultaneous orthogonal iteration

$$\frac{Q^{(0)} = I}{\text{for } k = 1, 2, \dots} \\
Z = AQ^{(k-1)} \\
\frac{Q^{(k)}R^{(k)}}{A^{(k)}} = Z (QR \text{ factorization}) \\
\overline{A}^{(k)} = (Q^{(k)})^t AQ^{(k)}$$

(b) Unshifted QR iteration

$$A^{(0)} = A$$

for $k = 1, 2, ...$
 $Q^{(k)}R^{(k)} = A^{(k-1)}$ (QR factorization)
 $A^{(k)} = R^{(k)}Q^{(k)}$
 $Q^{(k)} = Q^{(1)}Q^{(2)}...Q^{(k)}$

Additionally, for both algorithms, let

$$\underline{R}^{(k)} = R^{(k)} R^{(k-1)} \dots R^{(1)}$$

Show, by induction on k, that both generate identical sequences of matrices $\underline{R}^{(k)}$, $\underline{Q}^{(k)}$ and $A^{(k)}$, namely, those defined by the QR factorization of the $k^{\overline{th}}$ power of A,

$$A^k = Q^{(k)}\underline{R}^{(k)}$$

together with the projection

$$A^{(k)} = (Q^{(k)})^t A Q^{(k)}$$

13.

14. Using all of the above convince yourself of the rationale behind the practical QR algorithm

$$\begin{split} &(Q^{(0)})^t A^{(0)} Q^{(0)} = A \text{ (Hessenberg reduction)} \\ &\text{for } k = 1, 2, \dots \\ &\text{Pick a shift } \mu^{(k)} \text{ (e.g., choose } \mu^{(k)} = A^{(k-1)}_{mm}) \\ &Q^{(k)} R^{(k)} = A^{(k-1)} - \mu^{(k)} I \text{ (}QR \text{ factorization)} \\ &A^{(k)} = R^{(k)} Q^{(k)} + \mu^{(k)} I \text{ (re-combine factors in reverse order)} \\ &\text{If any sub-diagonal entry in } A^{(k)} \text{ is sufficiently close to zer, set it to zero to obtain} \\ &A^{(k)} = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \text{ (deflation)} \\ &\text{and apply the } QR \text{ algorithm to } A_{11} \text{ and } A_{22} \end{split}$$